triqs.gf.gf_fnt

C++ wrapping of functions on Green functions …

Functions

density

Signature : (gf_view<imfreq,matrix_valued> g, array_view<dcomplex,3> known_moments = {}) -> matrix<dcomplex> Density, as a matrix, computed from a Matsubara sum

enforce_discontinuity

Signature : (gf_view<triqs::gfs::legendre,matrix_valued> gl, matrix_view<double> disc) -> None Modify the coefficient to adjust discontinuity

fit_hermitian_tail

Signature : (gf_view<imfreq,matrix_valued> g, array_view<dcomplex,3> known_moments = {}) -> std::pair<array<dcomplex,3>, double> tail

fit_hermitian_tail_on_window

Signature : (gf_const_view<imfreq,matrix_valued> g, int n_min, int n_max, array_const_view<dcomplex,3> known_moments, int n_tail_max, int expansion_order) -> std::pair<array<dcomplex,3>, double> Fits the tail on the [n_min, n_max] window + negative counter part with the contraint of hermitian moment matrices

fit_tail

Signature : (gf_view<imfreq,matrix_valued> g, array_view<dcomplex,3> known_moments = {}) -> std::pair<array<dcomplex,3>, double> tail

fit_tail_on_window

Signature : (gf_const_view<imfreq,matrix_valued> g, int n_min, int n_max, array_const_view<dcomplex,3> known_moments, int n_tail_max, int expansion_order) -> std::pair<array<dcomplex,3>, double> Fits the tail on the [n_min, n_max] window + negative counter part

is_gf_hermitian

Signature : (gf<imfreq,scalar_valued> g, float tolerance = 1.e-12) -> bool

is_gf_real_in_tau

Signature : (gf<imfreq,scalar_valued> g, float tolerance = 1.e-12) -> bool

rebinning_tau

Signature : (gf_view<imtime,matrix_valued> g, size_t new_n_tau) -> gf<imtime, matrix_valued> Rebins the data of a GfImTime on a sparser mesh

replace_by_tail

Signature : (gf_view<imfreq,matrix_valued> g, array_const_view<dcomplex,3> tail, int n_min) -> None Replace the function by the evaluation of the tail for |n| > n_min

replace_by_tail_in_fit_window

Signature : (gf_view<imfreq,matrix_valued> g, array_const_view<dcomplex,3> tail) -> None Replace the function by the evaluation of the tail for |n| > n_min

set_from_fourier

Signature : (gf_view<imtime,scalar_valued> g_out, gf_view<imfreq,scalar_valued> g_in) -> None Fills self with the Fourier transform of g_in

set_from_imfreq

Signature : (gf_view<triqs::gfs::legendre,scalar_valued> gl, gf_view<imfreq,scalar_valued> gw) -> None Fills self with the legendre transform of gw

set_from_imtime

Signature : (gf_view<triqs::gfs::legendre,scalar_valued> gl, gf_view<imtime,scalar_valued> gt) -> None Fills self with the legendre transform of gt

set_from_legendre

Signature : (gf_view<imfreq,scalar_valued> gw, gf_view<triqs::gfs::legendre,scalar_valued> gl) -> None Fills self with the legendre transform of gl

set_from_pade

Signature : (gf_view<refreq,scalar_valued> gw, gf_view<imfreq,scalar_valued> giw, int n_points = 100, float freq_offset = 0.0) -> None

tau_L2_norm

Signature : (gf_view<dlr,scalar_valued> g) -> auto Calculate the L2 norm of the DLR Green's function in imaginary time: 1/beta * int_0^beta dt conj(g(t)) g(t).