Green’s functions

The gfs class of TRIQS contains objects representing Green functions over real or imaginary times, real or imaginary frequencies… that can be easily manipulated at the C++ level. Here are a couple of simple examples showing the basic use of this class. Learn more in the full reference.

Matsubara Green’s functions

Creation of a simple Green’s function \(G(i\omega)\)

In this example, we show how to initialize the following Green’s functions:

\[G(i\omega) = \frac{1}{i\omega -3}\]
#include <triqs/gfs.hpp>
#include <triqs/mesh.hpp>
using namespace triqs;
using namespace triqs::gfs;
using nda::clef::placeholder;

int main() {

  // Create a Matsubara-frequency mesh
  double beta  = 1;   // inverse temperature
  int n_iw     = 100; // number of Matsubara frequencies
  auto iw_mesh = mesh::imfreq{beta, Fermion, n_iw};

  // Create and fill a 1x1 Matsubara Green function
  auto g = gf{iw_mesh, {1, 1}};
  placeholder<0> iw_;
  g[iw_] << 1 / (iw_ - 3);
  std::cout << g(0) << std::endl;

  // An equivalent way to initialize
  g() = 0.0;
  for (auto w : g.mesh()) g[w] = 1 / (w - 3);
  std::cout << g(0) << std::endl;

  //an incorrect way : throws exception as expected
  //g(w) returns a const_view: () are to be used for interpolation, see bottom of the page
  //for (auto w : g.mesh())  g(w) = 1/(w-3);
}

Two-frequency Green’s function \(G(i\omega,i\nu)\)

In this example, we show how to initialize the following Green’s functions:

\[G(i\omega, i\nu) = \frac{1}{i\omega + i\nu -4}\]
#include <triqs/gfs.hpp>
#include <triqs/mesh.hpp>
using namespace triqs;
using namespace triqs::gfs;
using nda::clef::placeholder;

int main() {

  // Create a Matsubara-frequency mesh
  double beta  = 1;   // inverse temperature
  int n_iw     = 100; // number of Matsubara frequencies
  auto iw_mesh = mesh::imfreq{beta, Fermion, n_iw};

  // Create and fill a 1x1 Matsubara Green function on the product mesh
  auto g2 = gf{iw_mesh * iw_mesh, {1, 1}};

  //the shortest way to fill a gf
  placeholder<0> iw_;
  placeholder<1> inu_;
  g2[iw_, inu_] << 1 / (iw_ + inu_ - 4);
  std::cout << g2(0, 0) << std::endl;

  // An equivalent way to initialize
  g2() = 0.0;
  for (auto [w, nu] : g2.mesh()) g2[w, nu] = 1 / (w + nu - 4);
  std::cout << g2(0, 0) << std::endl;
}

Imaginary-time Green’s functions \(G(\tau)\)

#include <triqs/gfs.hpp>
#include <triqs/mesh.hpp>
using namespace triqs;
using namespace triqs::gfs;

int main() {
  // Create a imaginary-time mesh
  double beta   = 1;
  int n_times   = 101; // number of time-points
  auto tau_mesh = mesh::imtime{beta, Fermion, n_times};

  // Create a scalar-valued Green function g[tau] on the tau_mesh
  auto g = gf<imtime, scalar_valued>{tau_mesh};
}

Real-time Green’s functions \(G(t)\)

Here we create a GF defined on the time interval from tmin to tmax. If we want the value of the GF at any time to be a scalar, we use:

#include <triqs/gfs.hpp>
#include <triqs/mesh.hpp>
using namespace triqs;
using namespace triqs::gfs;

int main() {
  // Create a real-time mesh
  double tmin = 0, tmax = 10; // the time interval
  int n_times = 101;          // number of time-points
  auto t_mesh = mesh::retime{tmin, tmax, n_times};

  // Create a scalar-valued Green function on the t_mesh
  auto g = gf<retime, scalar_valued>{t_mesh};
}

If we need a matrix of size n by m, we use:

#include <triqs/gfs.hpp>
#include <triqs/mesh.hpp>
using namespace triqs;
using namespace triqs::gfs;

int main() {
  // Create a real-time mesh on interval [tmin, tmax]
  double tmin = 0, tmax = 10;
  int n_times = 101; // number of time-points
  auto t_mesh = mesh::retime{tmin, tmax, n_times};

  // Create a scalar-valued Green function on the t_mesh
  auto g = gf<retime, scalar_valued>{t_mesh};

  // Create a nxm matrix-valued Green function on the t_mesh
  const int n = 2, m = 2;
  auto gm = gf<retime, matrix_valued>{t_mesh, {n, m}};
}

Or a tensor!

#include <triqs/gfs.hpp>
#include <triqs/mesh.hpp>
using namespace triqs;
using namespace triqs::gfs;

int main() {
  // Number of time-points to be used
  int n_times = 101;

  // Create a real-time mesh on interval [tmin, tmax]
  double tmin = 0, tmax = 10;
  auto t_mesh = mesh::retime{tmin, tmax, n_times};

  // Create a imaginary-time mesh
  double beta   = 1;
  auto tau_mesh = mesh::imtime{beta, Fermion, n_times};

  // Create Green function g[t,tau] on product-mesh with values of shape (2,2,2)
  auto g = gf<prod<retime, imtime>, tensor_valued<3>>{t_mesh * tau_mesh, {2, 2, 2}};
}

Creation of a two real time GF \(G(t,t')\)

#include <triqs/gfs.hpp>
#include <triqs/mesh.hpp>
using namespace triqs;
using namespace triqs::gfs;

int main() {
  // Create a real-time mesh on the interval [tmin, tmax]
  double tmin = 0, tmax = 10;
  int n_times = 101; // number of time-points
  auto t_mesh = mesh::retime{tmin, tmax, n_times};

  // Create a scalar-valued Green function g[t1,t2] on the product-mesh and initialize
  auto g = gf<prod<retime, retime>, scalar_valued>{t_mesh * t_mesh};
}

How to fill a GF with placeholders

#include <triqs/gfs.hpp>
#include <triqs/mesh.hpp>
using namespace triqs;
using namespace triqs::gfs;

int main() {
  // Create a real-time mesh on the interval [tmin, tmax]
  double tmin = 0, tmax = 10;
  int n_times = 101; // number of time-points
  auto t_mesh = mesh::retime{tmin, tmax, n_times};

  // Create a scalar-valued Green function g[t1,t2] on the product-mesh and initialize
  auto g = gf<prod<retime, retime>, scalar_valued>{t_mesh * t_mesh};
  nda::clef::placeholder<0> t1_;
  nda::clef::placeholder<1> t2_;
  g[t1_, t2_] << 2 * t1_;
}

How to interpolate the GF value at a point of the domain

You simply have to call the GF with the coordinates of the point:

#include <triqs/gfs.hpp>
#include <triqs/mesh.hpp>
using namespace triqs;
using namespace triqs::gfs;

int main() {
  // Create a real-time mesh on the interval [tmin, tmax]
  double tmin = 0, tmax = 10;
  int n_times = 101; // number of time-points
  auto t_mesh = mesh::retime{tmin, tmax, n_times};

  // Create a scalar-valued Green function g[t1,t2] on the product-mesh and initialize
  auto g = gf<prod<retime, retime>, scalar_valued>{t_mesh * t_mesh};
  nda::clef::placeholder<0> t1_;
  nda::clef::placeholder<1> t2_;
  g[t1_, t2_] << 2 * t1_;

  // Interpolate to obtain value in the domain
  std::cout << g(0.24, 0.36) << std::endl;
}

Learn more in the full reference, see C++ documentation