triqs_tprf::lattice_dyson_g_fk
#include <triqs_tprf.hpp>
Synopsis
g_fk_t lattice_dyson_g_fk (double mu, e_k_cvt e_k, g_fk_cvt sigma_fk, double delta) g_fk_t lattice_dyson_g_fk (double mu, e_k_cvt e_k, g_f_cvt sigma_f, double delta)
Documentation
1) Construct an interacting real frequency lattice Green’s function \(G_{a\bar{b}}(\omega, \mathbf{k})\)
Computes
\[G_{a\bar{b}}(\omega, \mathbf{k}) = \left[ (\omega + i\delta + \mu ) \cdot \mathbf{1} - \epsilon(\mathbf{k}) - \Sigma(\omega, \mathbf{k}) \right]^{-1}_{a\bar{b}},\]using a discretized dispersion \(\epsilon_{\bar{a}b}(\mathbf{k})\), chemical potential \(\mu\), broadening \(\delta\), and a real frequency self energy \(\Sigma_{\bar{a}b}(\omega, \mathbf{k})\).
2) Construct an interacting real frequency lattice Green’s function \(G_{a\bar{b}}(\omega, \mathbf{k})\)
Computes
\[G_{a\bar{b}}(\omega, \mathbf{k}) = \left[ (\omega + i\delta + \mu ) \cdot \mathbf{1} - \epsilon(\mathbf{k}) - \Sigma(\omega) \right]^{-1}_{a\bar{b}},\]using a discretized dispersion \(\epsilon_{\bar{a}b}(\mathbf{k})\), chemical potential \(\mu\), broadening \(\delta\), and a real frequency self energy \(\Sigma_{\bar{a}b}(\omega)\).
Parameters
mu chemical potential \(\mu\)
e_k discretized lattice dispersion \(\epsilon_{\bar{a}b}(\mathbf{k})\)
sigma_fk real frequency self-energy \(\Sigma_{\bar{a}b}(\omega, \mathbf{k})\)
delta broadening \(\delta\)
Returns
real frequency lattice Green’s function \(G_{a\bar{b}}(\omega, \mathbf{k})\)