triqs_tprf::gw_sigma

#include <triqs_tprf.hpp>

Synopsis

  1. g_wk_t gw_sigma (chi_wk_cvt W_wk, g_wk_cvt g_wk)
  2. g_Dwk_t gw_sigma (chi_Dwk_cvt W_wk, chi_k_cvt v_k, g_Dwk_cvt g_wk)
  3. e_k_t gw_sigma (chi_k_cvt v_k, g_wk_cvt g_wk)

Documentation

1) GW self energy \(\Sigma(i\omega_n, \mathbf{k})\) calculator for dynamic interactions

Splits the interaction into a dynamic and a static part

\[W_{abcd}(i\omega_n, \mathbf{k}) = W^{(dyn)}_{abcd}(i\omega_n, \mathbf{k}) + V_{abcd}(\mathbf{k})\]

by fitting the high-frequency tail.

Fourier transforms the dynamic part of the interaction and the single-particle Green’s function to imaginary time and real space.

\[G_{ab}(\tau, \mathbf{r}) = \mathcal{F}^{-1} \left\{ G_{ab}(i\omega_n, \mathbf{k}) \right\}\]
\[W^{(dyn)}_{abcd}(\tau, \mathbf{r}) = \mathcal{F}^{-1} \left\{ W^{(dyn)}_{abcd}(i\omega_n, \mathbf{k}) \right\}\]

computes the GW self-energy as the product

\[\Sigma^{(dyn)}_{ab}(\tau, \mathbf{r}) = - \sum_{cd} W^{(dyn)}_{acdb}(\tau, \mathbf{r}) G_{cd}(\tau, \mathbf{r})\]

and transforms back to frequency and momentum

\[\Sigma^{(dyn)}_{ab}(i\omega_n, \mathbf{k}) = \mathcal{F} \left\{ \Sigma^{(dyn)}_{ab}(\tau, \mathbf{r}) \right\}\]

The self-energy of the static part of the interaction is calculated as the sum

\[\Sigma^{(stat)}_{ab}(\mathbf{k}) = -\frac{1}{N_k} \sum_{\mathbf{q},cd} V_{acdb}(\mathbf{k}) \rho_{dc}(\mathbf{k} + \mathbf{q})\]

where \(\rho_{ab}(\mathbf{k}) = -G_{ba}(\beta, \mathbf{k})\) is the density matrix of the single particle Green’s function.

The total GW self-energy is given by

\[\Sigma_{ab}(i\omega_n, \mathbf{k}) = \Sigma^{(dyn)}_{ab}(i\omega_n, \mathbf{k}) + \Sigma^{(stat)}_{ab}(\mathbf{k})\]

2) GW self energy \(\Sigma(i\omega_n, \mathbf{k})\) calculator for dynamic interactions

Fourier transforms the dynamic part of the interaction and the single-particle Green’s function to imaginary time and real space.

\[G_{ab}(\tau, \mathbf{r}) = \mathcal{F}^{-1} \left\{ G_{ab}(i\omega_n, \mathbf{k}) \right\}\]
\[W^{(dyn)}_{abcd}(\tau, \mathbf{r}) = \mathcal{F}^{-1} \left\{ W^{(dyn)}_{abcd}(i\omega_n, \mathbf{k}) \right\}\]

computes the GW self-energy as the product

\[\Sigma^{(dyn)}_{ab}(\tau, \mathbf{r}) = - \sum_{cd} W^{(dyn)}_{acdb}(\tau, \mathbf{r}) G_{cd}(\tau, \mathbf{r})\]

and transforms back to frequency and momentum

\[\Sigma^{(dyn)}_{ab}(i\omega_n, \mathbf{k}) = \mathcal{F} \left\{ \Sigma^{(dyn)}_{ab}(\tau, \mathbf{r}) \right\}\]

The self-energy of the static part of the interaction is calculated as the sum

\[\Sigma^{(stat)}_{ab}(\mathbf{k}) = -\frac{1}{N_k} \sum_{\mathbf{q},cd} V_{acdb}(\mathbf{k}) \rho_{dc}(\mathbf{k} + \mathbf{q})\]

where \(\rho_{ab}(\mathbf{k}) = -G_{ba}(\beta, \mathbf{k})\) is the density matrix of the single particle Green’s function.

The total GW self-energy is given by

\[\Sigma_{ab}(i\omega_n, \mathbf{k}) = \Sigma^{(dyn)}_{ab}(i\omega_n, \mathbf{k}) + \Sigma^{(stat)}_{ab}(\mathbf{k})\]

3) Static GW self energy \(\Sigma_{ab}(\mathbf{k})\) calculator

Computes the static GW self-energy (equivalent to the Fock self-energy)

Parameters

  • W_wk interaction \(W_{abcd}(i\omega_n, \mathbf{k})\)

  • g_wk single particle Green’s function \(G_{ab}(i\omega_n, \mathbf{k})\)

  • V_k static interaction \(V_{abcd}(\mathbf{q})\)

Returns

GW self-energy \(\Sigma_{ab}(i\omega_n, \mathbf{k})\)