triqs_tprf::lattice_dyson_g_wk
#include <triqs_tprf.hpp>
Synopsis
g_wk_t lattice_dyson_g_wk (double mu, e_k_cvt e_k, g_w_cvt sigma_w) g_wk_t lattice_dyson_g_wk (double mu, e_k_cvt e_k, g_wk_cvt sigma_wk) g_Dwk_t lattice_dyson_g_wk (double mu, e_k_cvt e_k, g_Dwk_cvt sigma_wk) g_wk_t lattice_dyson_g_wk (double mu, e_k_cvt e_k, g_w_cvt sigma_w) g_Dwk_t lattice_dyson_g_wk (double mu, e_k_cvt e_k, g_Dw_cvt sigma_w)
Documentation
1) Construct an interacting Matsubara frequency lattice Green’s function \(G_{a\bar{b}}(i\omega_n, \mathbf{k})\)
Computes
\[G_{a\bar{b}}(i\omega_n, \mathbf{k}) = \left[ (i\omega_n + \mu ) \cdot \mathbf{1} - \epsilon(\mathbf{k}) - \Sigma(i\omega_n) \right]^{-1}_{a\bar{b}},\]using a discretized dispersion \(\epsilon_{\bar{a}b}(\mathbf{k})\), chemical potential \(\mu\), and a momentum independent Matsubara frequency self energy \(\Sigma_{\bar{a}b}(i\omega_n)\).
2) Construct an interacting Matsubara frequency lattice Green’s function \(G_{a\bar{b}}(i\omega_n, \mathbf{k})\)
Computes
\[G_{a\bar{b}}(i\omega_n, \mathbf{k}) = \left[ (i\omega_n + \mu ) \cdot \mathbf{1} - \epsilon(\mathbf{k}) - \Sigma(i\omega_n, \mathbf{k}) \right]^{-1}_{a\bar{b}},\]using a discretized dispersion \(\epsilon_{\bar{a}b}(\mathbf{k})\), chemical potential \(\mu\), and a Matsubara frequency self energy \(\Sigma_{\bar{a}b}(i\omega_n, \mathbf{k})\).
3) Construct an interacting Matsubara frequency lattice Green’s function \(G_{a\bar{b}}(i\omega_n, \mathbf{k})\)
Computes
\[G_{a\bar{b}}(i\omega_n, \mathbf{k}) = \left[ (i\omega_n + \mu ) \cdot \mathbf{1} - \epsilon(\mathbf{k}) - \Sigma(i\omega_n, \mathbf{k}) \right]^{-1}_{a\bar{b}},\]using a discretized dispersion \(\epsilon_{\bar{a}b}(\mathbf{k})\), chemical potential \(\mu\), and a Matsubara frequency self energy \(\Sigma_{\bar{a}b}(i\omega_n, \mathbf{k})\).
4) Construct an interacting Matsubara frequency lattice Green’s function \(G_{a\bar{b}}(i\omega_n, \mathbf{k})\)
Computes
\[G_{a\bar{b}}(i\omega_n, \mathbf{k}) = \left[ (i\omega_n + \mu ) \cdot \mathbf{1} - \epsilon(\mathbf{k}) - \Sigma(i\omega_n) \right]^{-1}_{a\bar{b}},\]using a discretized dispersion \(\epsilon_{\bar{a}b}(\mathbf{k})\), chemical potential \(\mu\), and a momentum independent Matsubara frequency self energy \(\Sigma_{\bar{a}b}(i\omega_n)\).
5) Construct an interacting Matsubara frequency lattice Green’s function \(G_{a\bar{b}}(i\omega_n, \mathbf{k})\)
Computes
\[G_{a\bar{b}}(i\omega_n, \mathbf{k}) = \left[ (i\omega_n + \mu ) \cdot \mathbf{1} - \epsilon(\mathbf{k}) - \Sigma(i\omega_n) \right]^{-1}_{a\bar{b}},\]using a discretized dispersion \(\epsilon_{\bar{a}b}(\mathbf{k})\), chemical potential \(\mu\), and a Matsubara frequency self energy \(\Sigma_{\bar{a}b}(i\omega_n)\).
Parameters
mu chemical potential \(\mu\)
e_k discretized lattice dispersion \(\epsilon_{\bar{a}b}(\mathbf{k})\)
sigma_w imaginary frequency self-energy \(\Sigma_{\bar{a}b}(i\omega_n)\)
sigma_wk imaginary frequency self-energy \(\Sigma_{\bar{a}b}(i\omega_n, \mathbf{k})\)
Returns
Matsubara frequency lattice Green’s function \(G_{a\bar{b}}(i\omega_n, \mathbf{k})\)