triqs_tprf::lattice_dyson_g_w
#include <triqs_tprf.hpp>
Synopsis
g_w_t lattice_dyson_g_w (double mu, e_k_cvt e_k, g_w_cvt sigma_w)
Construct an interacting Matsubara frequency local (\(\mathbf{r}=\mathbf{0}\)) lattice Green’s function \(G_{a\bar{b}}(i\omega_n)\)
Computes
\[G_{a\bar{b}}(i\omega_n) = \frac{1}{N_k} \sum_\mathbf{k} \left[
(i\omega_n + \mu ) \cdot \mathbf{1} - \epsilon(\mathbf{k}) - \Sigma(i\omega_n)
\right]^{-1}_{a\bar{b}},\]
using a discretized dispersion \(\epsilon_{\bar{a}b}(\mathbf{k})\), chemical potential \(\mu\), and a momentum independent Matsubara frequency self energy \(\Sigma_{\bar{a}b}(i\omega_n)\).
Parameters
mu chemical potential \(\mu\)
e_k discretized lattice dispersion \(\epsilon_{\bar{a}b}(\mathbf{k})\)
sigma_w imaginary frequency self-energy \(\Sigma_{\bar{a}b}(i\omega_n)\)
Returns
Matsubara frequency lattice Green’s function \(G_{a\bar{b}}(i\omega_n, \mathbf{k})\)