triqs_tprf::eliashberg_product_fft

#include <triqs_tprf.hpp>

Synopsis

g_wk_t eliashberg_product_fft (chi_tr_vt Gamma_pp_dyn_tr,
chi_r_vt Gamma_pp_const_r,
g_wk_vt g_wk,
g_wk_vt delta_wk)

Linearized Eliashberg product via FFT

Computes the linearized Eliashberg product in the singlet/triplet channel given by

\[\begin{split}\Delta^{\mathrm{s/t}, \mathrm{out}}_{\bar{a}\bar{b}}(i\nu,\mathbf{k}) = -\frac{1}{2N_\mathbf{k} \beta}\sum_{i\nu'}\sum_{\mathbf{k}'} \Gamma^{\mathrm{s/t}}_{c\bar{a}d\bar{b}}(i\nu - i\nu',\mathbf{k}-\mathbf{k}') \\ \times G_{c\bar{e}}(i\nu',\mathbf{k}') G_{d\bar{f}}(-i\nu',-\mathbf{k}') \Delta^{\mathrm{s/t}, \mathrm{in}}_{\bar{e}\bar{f}}(i\nu',\mathbf{k}')\,,\end{split}\]

by taking advantage of the convolution theorem.

We therefore first calculate

\[F^{\mathrm{s/t}}_{ab}(i\nu,\mathbf{k}) = G_{a\bar{c}}(i\nu,\mathbf{k}) G_{b\bar{d}}(-i\nu,-\mathbf{k}) \Delta^{\mathrm{s/t}, \mathrm{in}}_{\bar{c}\bar{d}}(i\nu,\mathbf{k})\,,\]

which we then Fourier transform to imaginary time and real-space

\[F^{\mathrm{s/t}}_{ab}(\tau,\mathbf{r}) = \mathcal{F}^2 \big( F^{\mathrm{s/t}}_{ab}(i\nu,\mathbf{k}) \big)\,.\]

We then calculate first the dynamic gap

\[\Delta^{\mathrm{s/t}, \mathrm{dynamic}}_{\bar{a}\bar{b}}(\tau,\mathbf{r}) = -\frac{1}{2} \Gamma^{\mathrm{s/t}, \mathrm{dynamic}}_{c\bar{a}d\bar{b}}(\tau, \mathbf{r}) F^{\mathrm{s/t}}_{cd}(\tau, \mathbf{r})\,,\]

and then the static gap

\[\Delta^{\mathrm{s/t}, \mathrm{static}}_{\bar{a}\bar{b}}(\mathbf{r}) = -\frac{1}{2} \Gamma^{\mathrm{s/t}, \mathrm{static}}_{c\bar{a}d\bar{b}}(\mathbf{r}) F^{\mathrm{s/t}}_{cd}(\tau=0, \mathbf{r})\,.\]

We then Fourier transform the dynamic gap to imaginary frequencies

\[\Delta^{\mathrm{s/t}, \mathrm{dynamic}}_{\bar{a}\bar{b}}(i\nu_n,\mathbf{r}) = \mathcal{F} \big( \Delta^{\mathrm{s/t}, \mathrm{dynamic}}_{\bar{a}\bar{b}}(\tau,\mathbf{r}) \big)\,,\]

and then add both component together

\[\Delta^{\mathrm{s/t}, \mathrm{out}}_{\bar{a}\bar{b}}(i\nu_n,\mathbf{r}) = \Delta^{\mathrm{s/t}, \mathrm{dynamic}}_{\bar{a}\bar{b}}(i\nu_n,\mathbf{r}) + \Delta^{\mathrm{s/t}, \mathrm{static}}_{\bar{a}\bar{b}}(\mathbf{r})\,,\]

and then finally Fourier transform to \(\mathbf{k}\)-space

\[\Delta^{\mathrm{s/t}, \mathrm{out}}_{\bar{a}\bar{b}}(i\nu_n,\mathbf{k}) = \mathcal{F} \big( \Delta^{\mathrm{s/t}, \mathrm{out}}_{\bar{a}\bar{b}}(i\nu_n,\mathbf{r}) \big)\,.\]

Parameters

  • Gamma_pp_dyn_tr dynamic part of the particle-particle vertex \(\Gamma^{\mathrm{s/t}, \mathrm{dynamic}}_{c\bar{a}d\bar{b}}(\tau, \mathbf{r})\)

  • Gamma_pp_const_r static part of the particle-particle vertex \(\Gamma^{\mathrm{s/t}, \mathrm{static}}_{c\bar{a}d\bar{b}}(\mathbf{r})\)

  • g_wk one-particle Green’s function \(G_{a\bar{b}}(i\nu_n,\mathbf{k})\)

  • delta_wk superconducting gap \(\Delta^{\mathrm{s/t}, \mathrm{in}}_{\bar{a}\bar{b}}(i\nu_n,\mathbf{k})\)

Returns

Gives the result of the product \(\Delta^{\mathrm{s/t}, \mathrm{out}}\)