# Copyright (c) 2017-2018 Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
# Copyright (c) 2017-2018 Centre national de la recherche scientifique (CNRS)
# Copyright (c) 2018-2023 Simons Foundation
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You may obtain a copy of the License at
# https:#www.gnu.org/licenses/gpl-3.0.txt
#
# Authors: Michel Ferrero, Olivier Gingras, Alexander Hampel, Jonathan Karp, Manuel, Olivier Parcollet, Markus Richter, Hugo U. R. Strand, Nils Wentzell
import itertools, warnings, numbers
from functools import reduce # Valid in Python 2.6+, required in Python 3
import operator
import numpy as np
from . import mesh_product
from . import lazy_expressions
from . import descriptors, descriptor_base
from .mesh_product import MeshProduct
from triqs.plot.protocol import clip_array
from . import meshes
from . import plot
from . import gf_fnt, wrapped_aux
from .mesh_point import MeshPoint
from operator import mul
# list of all the meshes
all_meshes = (MeshProduct,) + tuple(c for c in list(meshes.__dict__.values()) if isinstance(c, type) and c.__name__.startswith('Mesh'))
# list of call_proxies
all_call_proxies = dict( (c.__name__, c) for c in list(wrapped_aux.__dict__.values()) if isinstance(c, type) and c.__name__.startswith('CallProxy'))
[docs]
class CallProxyNone:
"""Default do nothing value"""
[docs]
def __init__(self, *args):
pass
def __call__(self, *args):
raise NotImplementedError
# For IO later
[docs]
def call_factory_from_dict(cl,name, dic):
"""Given a class cl and a dict dic, it calls cl.__factory_from_dict__(dic)"""
return cl.__factory_from_dict__(name, dic)
# a metaclass that adds all functions of gf_fnt as methods
# the C++ will take care of the dispatch
[docs]
def add_method_helper(a,cls):
def _(self, *args, **kw):
return a(self, *args, **kw)
_.__doc__ = a.__doc__
#_.__doc__ = 50*'-' + '\n' + a.__doc__
_.__name__ = a.__name__
return _
[docs]
class AddMethod(type):
[docs]
def __init__(cls, name, bases, dct):
super(AddMethod, cls).__init__(name, bases, dct)
for a in [f for f in list(gf_fnt.__dict__.values()) if callable(f)]:
if not hasattr(cls, a.__name__):
setattr(cls, a.__name__, add_method_helper(a,cls))
[docs]
class Idx:
[docs]
def __init__(self, *x):
self.idx = x[0] if len(x)==1 else x
[docs]
class Gf(metaclass=AddMethod):
r""" TRIQS Greens function container class
Parameters
----------
mesh: Types defined in triqs.gf beginning with 'Mesh'
The mesh on which the Green function is defined.
data: numpy.array, optional
The data of the Greens function.
Must be of dimension ``mesh.rank + target_rank``.
target_shape: list of int, optional
Shape of the target space.
is_real: bool
Is the Greens function real valued?
If true, and target_shape is set, the data will be real.
Mutually exclusive with argument ``data``.
name: str
The name of the Greens function for plotting.
Notes
-----
One of ``target_shape`` or ``data`` must be set, and the other must be `None`.
"""
_hdf5_data_scheme_ = 'Gf'
__array_priority__ = 10000 # Makes sure the operations of this class are applied as priority
[docs]
def __init__(self, **kw): # enforce keyword only policy
#print "Gf construct args", kw
def delegate(self, mesh, data=None, target_shape=None, name = '', is_real = False, indices=None):
"""
target_shape and data : must provide exactly one of them
"""
# FIXME ? name is deprecated
#if name:
# warnings.warn("constructor parameter 'name' is deprecated in gf constructor.\n It is only used in plots.\n Pass the name to the oplot function directly")
self.name = name
# input check
assert (target_shape is None) or (data is None), "data and target_shape : one must be None"
assert (data is None) or (is_real is False), "is_real can not be True if data is not None"
if target_shape :
for i in target_shape :
assert i>0, "Target shape elements must be >0"
# mesh
assert isinstance(mesh, all_meshes), "Mesh is unknown. Possible type of meshes are %s" % ', '.join([m.__name__ for m in all_meshes])
self._mesh = mesh
# indices backward compat layer
if indices is not None:
warnings.warn("The use of string indices is no longer supported, converting to target_shape instead.", DeprecationWarning)
assert target_shape is None, "target_shape must be None if indices is not None"
if isinstance(indices[0], (list, range)):
target_shape = [len(li) for li in indices]
else:
target_shape = [len(indices), len(indices)]
# data
if data is None:
# if no data, we need target_shape
assert target_shape is not None, "target_shape must be provided if data is None"
# we now allocate the data
l = mesh.size_of_components() if isinstance(mesh, MeshProduct) else [len(mesh)]
data = np.zeros(list(l) + list(target_shape), dtype = np.float64 if is_real else np.complex128)
else:
l = tuple(mesh.size_of_components()) if isinstance(mesh, MeshProduct) else (len(mesh),)
assert l == data.shape[0:len(l)], "Mismatch between data shape %s and sizes of mesh(es) %s\n " % (data.shape, l)
# Now we have the data at correct size. Set up a few short cuts
self._data = data
len_data_shape = len(self._data.shape)
self._target_rank = len_data_shape - (self._mesh.rank if isinstance(mesh, MeshProduct) else 1)
self._rank = len_data_shape - self._target_rank
assert self._rank >= 0
# target_shape. Ensure it is correct in any case.
assert target_shape is None or tuple(target_shape) == self._data.shape[self._rank:] # Debug only
self._target_shape = self._data.shape[self._rank:]
# NB : at this stage, enough checks should have been made in Python in order for the C++ view
# to be constructed without any INTERNAL exceptions.
# Set up the C proxy for call operator for speed. The name has to
# agree with the wrapped_aux module, it is of only internal use
s = '_x_'.join( m.__class__.__name__[4:] for m in self.mesh._mlist) if isinstance(mesh, MeshProduct) else self._mesh.__class__.__name__[4:]
proxyname = 'CallProxy%s_%s%s'%(s, self.target_rank,'_R' if data.dtype == np.float64 else '')
try:
self._c_proxy = all_call_proxies.get(proxyname, CallProxyNone)(self)
except:
self._c_proxy = None
# check all invariants. Debug.
self.__check_invariants()
delegate(self, **kw)
def __check_invariants(self):
"""Check various invariant. Mainly for debug"""
# rank
assert self.rank == self._mesh.rank if isinstance (self._mesh, MeshProduct) else 1
# The mesh size must correspond to the size of the data
assert self._data.shape[:self._rank] == tuple(len(m) for m in self._mesh.components) if isinstance (self._mesh, MeshProduct) else (len(self._mesh),)
[docs]
def density(self, *args, **kwargs):
r"""Compute the density matrix of the Greens function
Parameters
----------
beta : float, optional
Used for finite temperature density calculation with ``MeshReFreq``.
Returns
-------
density_matrix : ndarray
Single particle density matrix with shape ``target_shape``.
Notes
-----
Only works for single mesh Greens functions with a, Matsubara,
real-frequency, or Legendre mesh.
"""
return gf_fnt.density(self, *args, **kwargs)
@property
def rank(self):
r"""int : The mesh rank (number of meshes)."""
return self._rank
@property
def target_rank(self):
"""int : The rank of the target space."""
return self._target_rank
@property
def target_shape(self):
"""(int, ...) : The shape of the target space."""
return self._target_shape
@property
def target_indices(self):
"""(int, ...) : A generator for the target space integer tuples"""
return itertools.product(*[range(i) for i in self._target_shape])
@property
def indices(self):
warnings.warn("Gf.indices is deprecated, use Gf.target_shape", DeprecationWarning)
"""(int, ...) : Deprecated. Use target_indices instead."""
return [range(d) for d in self.target_shape]
@property
def mesh(self):
"""gf_mesh : The mesh of the Greens function."""
return self._mesh
@property
def data(self):
"""ndarray : Raw data of the Greens function.
Storage convention is ``self.data[x,y,z, ..., n0,n1,n2]``
where ``x,y,z`` correspond to the mesh variables (the mesh) and
``n0, n1, n2`` to the ``target_space``.
"""
return self._data
[docs]
def copy(self) :
"""Deep copy of the Greens function.
Returns
-------
G : Gf
Copy of self.
"""
return Gf (mesh = self._mesh.copy(),
data = self._data.copy(),
name = self.name)
[docs]
def copy_from(self, another):
"""Copy the data of another Greens function into self."""
self._mesh.copy_from(another.mesh)
assert self._data.shape == another._data.shape, "Shapes are incompatible: " + str(self._data.shape) + " vs " + str(another._data.shape)
self._data[:] = another._data[:]
self.__check_invariants()
def __repr__(self):
return "Greens Function %s with mesh %s and target_shape %s: \n"%(self.name, self.mesh, self.target_shape)
def __str__ (self):
return self.__repr__()
#-------------- Bracket operator [] -------------------------
# Helper: Convert Idx or MeshPoint into data_index, else forward argument
@staticmethod
def _to_data_index(x, m):
if isinstance(x, MeshPoint):
assert x.mesh_hash == m.mesh_hash, "Green function Mesh and MeshPoint have incompatible hash"
return x.data_index
elif isinstance(x, Idx):
return m.to_data_index(x.idx)
else:
return x
_full_slice = slice(None, None, None)
def __getitem__(self, key):
# First case : g[:] = RHS ... will be g << RHS
if key == self._full_slice:
return self
# Only one argument. Must be a mesh point, idx or slicing rank1 target space
if not isinstance(key, tuple):
if isinstance(key, (Idx, MeshPoint)):
return self.data[self._to_data_index(key, self._mesh)]
else: key = (key,)
# If all arguments are MeshPoint, we are slicing the mesh or evaluating
if all(isinstance(x, (MeshPoint, Idx)) for x in key):
assert len(key) == self.rank, "wrong number of arguments in [ ]. Expected %s, got %s"%(self.rank, len(key))
return self.data[tuple(self._to_data_index(x,m) for x,m in zip(key,self._mesh._mlist))]
# If any argument is a MeshPoint, we are slicing the mesh or evaluating
elif any(isinstance(x, (MeshPoint, Idx)) for x in key):
assert len(key) == self.rank, "wrong number of arguments in [[ ]]. Expected %s, got %s"%(self.rank, len(key))
assert all(isinstance(x, (MeshPoint, Idx, slice)) for x in key), "Invalid accessor of Greens function, please combine only MeshPoints, Idx and slice"
assert self.rank > 1, "Internal error : impossible case" # here all == any for one argument
mlist = self._mesh._mlist
for x in key:
if isinstance(x, slice) and x != self._full_slice: raise NotImplementedError("Partial slice of the mesh not implemented")
# slice the data
k = tuple(self._to_data_index(x,m) for x,m in zip(key,mlist)) + self._target_rank * (slice(0, None),)
dat = self._data[k]
# list of the remaining lists
mlist = [m for i,m in filter(lambda tup_im : not isinstance(tup_im[0], (MeshPoint, Idx)), zip(key, mlist))]
assert len(mlist) > 0, "Internal error"
mesh = MeshProduct(*mlist) if len(mlist)>1 else mlist[0]
sing = None
r = Gf(mesh = mesh, data = dat)
r.__check_invariants()
return r
# In all other cases, we are slicing the target space
else :
assert self.target_rank == len(key), "wrong number of arguments. Expected %s, got %s"%(self.target_rank, len(key))
# Slicing with ranges
if all(isinstance(x, slice) for x in key):
key_tpl = tuple(key)
# Integer access
elif all(isinstance(x, int) for x in key):
key_tpl = tuple(key)
# Invalid Access
elif any(isinstance(x, str) for x in key):
raise RuntimeError("String indices are no longer supported. Please use integer indices for the target.")
else:
raise NotImplementedError("Partial slice of the target space not implemented")
dat = self._data[ self._rank*(slice(0,None),) + key_tpl ]
r = Gf(mesh = self._mesh, data = dat)
r.__check_invariants()
return r
def __setitem__(self, key, val):
# Only one argument and not a slice. Must be a mesh point, Idx
if isinstance(key, (MeshPoint, Idx)):
self.data[self._to_data_index(key, self._mesh)] = val
# If all arguments are MeshPoint, we are slicing the mesh or evaluating
elif isinstance(key, tuple) and all(isinstance(x, (MeshPoint, Idx)) for x in key):
assert len(key) == self.rank, "wrong number of arguments in [ ]. Expected %s, got %s"%(self.rank, len(key))
self.data[tuple(self._to_data_index(x,m) for x,m in zip(key,self._mesh._mlist))] = val
else:
self[key] << val
# -------------- Various operations -------------------------------------
@property
def real(self):
"""Gf : A Greens function with a view of the real part."""
return Gf(mesh = self._mesh, data = self._data.real, name = ("Re " + self.name) if self.name else '')
@property
def imag(self):
"""Gf : A Greens function with a view of the imaginary part."""
return Gf(mesh = self._mesh, data = self._data.imag, name = ("Im " + self.name) if self.name else '')
# -------------- Lazy system -------------------------------------
def __lazy_expr_eval_context__(self) :
return LazyCTX(self)
def __lshift__(self, A):
""" A can be two things:
* G << any_init will init the GFBloc with the initializer
* G << g2 where g2 is a GFBloc will copy g2 into self
"""
if isinstance(A, Gf):
if self is not A: # otherwise it is useless AND does not work !!
assert self.mesh == A.mesh, "Green function meshes are not compatible:\n %s\nand\n %s" % (self.mesh, A.mesh)
self.copy_from(A)
elif isinstance(A, lazy_expressions.LazyExpr): # A is a lazy_expression made of GF, scalars, descriptors
A2 = descriptors.convert_scalar_to_const(A)
def e_t (x):
if not isinstance(x, descriptors.Base): return x
tmp = self.copy()
x(tmp)
return tmp
self.copy_from (lazy_expressions.eval_expr_with_context(e_t, A2) )
elif isinstance(A, lazy_expressions.LazyExprTerminal): #e.g. g<< SemiCircular (...)
self << lazy_expressions.LazyExpr(A)
elif descriptors.is_scalar(A): #in the case it is a scalar ....
self << lazy_expressions.LazyExpr(A)
else:
raise NotImplemented
return self
# -------------- call -------------------------------------
def __call__(self, *args) :
assert self._c_proxy, " no proxy"
def filt(x):
if isinstance(x, MeshPoint):
return x.value
if isinstance(x, Idx):
return x.idx
return x
return self._c_proxy(*[filt(x) for x in args])
# -------------- Various operations -------------------------------------
def __le__(self, other):
raise RuntimeError(" Operator <= not defined ")
# ---------- Addition
def __iadd__(self,arg):
if descriptor_base.is_lazy(arg): return lazy_expressions.make_lazy(self) + arg
if isinstance(arg, Gf):
assert type(self.mesh) == type(arg.mesh), "Can not add two Gf with meshes of different type"
assert self.mesh == arg.mesh, "Can not add two Gf with different mesh"
self._data += arg._data
else:
if self._target_rank != 2 and not isinstance(arg, np.ndarray):
self._data[:] += arg
elif self._target_rank == 2:
wrapped_aux._iadd_g_matrix_scalar(self, arg)
else:
raise NotImplemented
return self
def __add__(self,y):
c = self.copy()
c += y
return c
def __radd__(self,y): return self.__add__(y)
# ---------- Substraction
def __isub__(self,arg):
if descriptor_base.is_lazy(arg): return lazy_expressions.make_lazy(self) - arg
if isinstance(arg, Gf):
assert type(self.mesh) == type(arg.mesh), "Can not subtract two Gf with meshes of different type"
assert self.mesh == arg.mesh, "Can not subtract two Gf with different mesh"
self._data -= arg._data
else:
if self._target_rank != 2 and not isinstance(arg, np.ndarray):
self._data[:] -= arg
elif self._target_rank == 2:
wrapped_aux._isub_g_matrix_scalar(self, arg)
else:
raise NotImplemented
return self
def __sub__(self,y):
c = self.copy()
c -= y
return c
def __rsub__(self,y):
c = (-1)*self.copy()
c += y
return c
# ---------- Matrix Multiplication (@)
def __imatmul__(self,arg):
if descriptor_base.is_lazy(arg): return lazy_expressions.make_lazy(self) * arg
# If arg is a Gf
if isinstance(arg, Gf):
assert type(self.mesh) == type(arg.mesh), "Can not multiply two Gf with meshes of different type"
assert self.mesh == arg.mesh, "Can not use in-place multiplication for two Gf with different mesh"
if self.target_rank == 2:
if arg.target_rank == 2:
assert arg.target_shape[0] != arg.target_shape[1], "In place multiplication not supported if"
"the argument is a nonsquare matrix. Use regular multiplication instead."
np.matmul(self.data, arg.data, out=self.data)
elif arg.target_rank == 0:
self.data[:] *= arg.data[..., None, None]
else:
raise NotImplementedError("argument of in place multiplication must be rank 0 or 2")
elif self.target_rank == 0:
assert arg.target_rank == 0, "argument of in place multiplication must have rank 0 if self does"
self.data[:] = self.data * arg.data
else:
raise NotImplementedError("Green's functions must be of rank 0 or 2 for multiplication")
elif isinstance(arg, numbers.Number):
self._data[:] *= arg
elif isinstance(arg, np.ndarray):
assert len(arg.shape) == 2, "Multiplication only supported for matrices"
assert len(self.target_shape) == 2, "Multiplication only supported for matrix_valued Gfs"
self.data[:] = np.tensordot(self.data, arg, axes=([-1], [-2]))
else:
assert False, "Invalid operand type for Gf in-place multiplication"
return self
@staticmethod
def _combine_mesh_mul(l, r):
""" Apply the Fermion/Boson rules for ImTime mesh, and recursively for MeshProduct"""
assert type(l) == type(r), "Can not multiply two Gf with meshes of different type"
if type(l) is MeshProduct:
return MeshProduct(*[Gf._combine_mesh_mul(l,r) for (l,r) in zip(l.components, r.components)])
if not type(l) is meshes.MeshImTime: #regular case
assert l==r, "Can not multiply two Gf with different mesh"
return l.copy()
else:
assert abs(l.beta-r.beta) < 1.e-15 and len(l)== len(r), "Can not multiply two Gf with different mesh"
return meshes.MeshImTime(l.beta, 'Boson' if l.statistic == r.statistic else 'Fermion', len(l))
def __matmul__(self,y):
if isinstance(y, Gf):
# make a copy, but special treatment of the mesh in the Imtime case.
result_mesh = Gf._combine_mesh_mul(self._mesh, y.mesh)
if self.target_rank == 2 and y.target_rank == 2:
c = Gf(mesh=result_mesh, target_shape=[self.target_shape[0], y.target_shape[1]])
np.matmul(self.data, y.data, out=c.data)
elif self.target_rank == 0 and y.target_rank == 0:
c = Gf(mesh=result_mesh, target_shape=[])
c.data[:] = self.data * y.data
elif self.target_rank == 2 and y.target_rank == 0:
c = Gf(mesh=result_mesh, target_shape=self.target_shape)
c.data[:] = self.data * y.data[..., None, None]
elif self.target_rank == 0 and y.target_rank == 2:
c = Gf(mesh=result_mesh, target_shape=y.target_shape)
c.data[:] = self.data[..., None, None] * y.data
else:
raise NotImplementedError("Green's functions must be of rank 0 or 2 for multiplication")
elif isinstance(y, (numbers.Number, np.ndarray)):
c = self.copy()
c *= y
else:
assert False, "Invalid operand type for Gf multiplication"
return c
def __rmatmul__(self,y):
c = self.copy()
if isinstance(y, np.ndarray):
assert len(y.shape) == 2, "Multiplication only supported for matrices"
assert len(self.target_shape) == 2, "Multiplication only supported for matrix_valued Gfs"
c.data[:] = np.moveaxis(np.tensordot(y, self.data, axes=([-1], [-2])), 0, -2)
elif isinstance(y, numbers.Number):
c *= y
else:
assert False, "Invalid operand type for Gf multiplication"
return c
# ---------- Multiplication (with *, for now it's equivalent to the matrix multiplication)
def __imul__(self,arg):
return self.__imatmul__(arg)
def __mul__(self,y):
return self.__matmul__(y)
def __rmul__(self,y):
return self.__rmatmul__(y)
# ---------- Division
def __itruediv__(self,arg):
self._data[:] /= arg
return self
def __truediv__(self,y):
c = self.copy()
c /= y
return c
# ---------- unary -
def __neg__(self):
c = self.copy()
c *= -1
return c
#----------------------------- other operations -----------------------------------
[docs]
def invert(self):
"""Inverts the Greens function (in place)."""
if self.target_rank == 0: # Scalar target space
self.data[:] = 1. / self.data
elif self.target_rank == 2: # Matrix target space
# TODO: Replace by np.linag.inv, since v1.8
# Cf https://docs.scipy.org/doc/numpy/reference/generated/numpy.reshape.html
d = self.data.view()
d.shape = (np.prod(d.shape[:-2]),) + d.shape[-2:] # reshaped view, guarantee no copy
wrapped_aux._gf_invert_data_in_place(d)
else:
raise TypeError(
"Inversion only makes sense for matrix or scalar_valued Greens functions")
[docs]
def inverse(self):
"""Computes the inverse of the Greens function.
Returns
-------
G : Gf (copy)
The matrix/scalar inverse of the Greens function.
"""
r = self.copy()
r.invert()
return r
[docs]
def transpose(self):
"""Take the transpose of a matrix valued Greens function.
Returns
-------
G : Gf (copy)
The transpose of the Greens function.
Notes
-----
Only implemented for single mesh matrix valued Greens functions.
"""
# FIXME Why this assert ?
#assert any( (isinstance(self.mesh, x) for x in [meshes.MeshImFreq, meshes.MeshReFreq])), "Method invalid for this Gf"
assert self.rank == 1, "Transpose only implemented for single mesh Greens functions"
assert self.target_rank == 2, "Transpose only implemented for matrix valued Greens functions"
d = np.transpose(self.data.copy(), (0, 2, 1))
return Gf(mesh = self.mesh, data= d)
[docs]
def conjugate(self):
"""Conjugate of the Greens function.
Returns
-------
G : Gf (copy)
Conjugate of the Greens function.
"""
return Gf(mesh = self.mesh, data= np.conj(self.data))
[docs]
def zero(self):
"""Set all values to zero."""
self._data[:] = 0
[docs]
def from_L_G_R(self, L, G, R):
r"""Matrix transform of the target space of a matrix valued Greens function.
Sets the current Greens function :math:`g_{ab}` to the matrix transform of :math:`G_{cd}`
using the left and right transform matrices :math:`L_{ac}` and :math:`R_{db}`.
.. math::
g_{ab} = \sum_{cd} L_{ac} G_{cd} R_{db}
Parameters
----------
L : (a, c) ndarray
Left side transform matrix.
G : Gf matrix valued target_shape == (c, d)
Greens function to transform.
R : (d, b) ndarray
Right side transform matrix.
Notes
-----
Only implemented for Greens functions with a single mesh.
"""
assert self.rank == 1, "Only implemented for Greens functions with one mesh"
assert self.target_rank == 2, "Matrix transform only valid for matrix valued Greens functions"
assert len(L.shape) == 2, "L needs to be two dimensional"
assert len(R.shape) == 2, "R needs to be two dimensional"
assert L.shape[1] == G.target_shape[0], "Dimension mismatch between L and G"
assert R.shape[0] == G.target_shape[1], "Dimension mismatch between G and R"
assert L.shape[0] == self.target_shape[0], "Dimension mismatch between L and self"
assert R.shape[1] == self.target_shape[1], "Dimension mismatch between R and self"
if not L.strides == sorted(L.strides):
L = L.copy(order='C')
if not R.strides == sorted(R.strides):
R = R.copy(order='C')
wrapped_aux.set_from_gf_data_mul_LR(self.data, L, G.data, R)
[docs]
def total_density(self, *args, **kwargs):
"""Compute total density.
Returns
-------
density : float
Total density of the Greens function.
Notes
-----
Only implemented for single mesh Greens function with a,
Matsubara, real-frequency, or Legendre mesh.
"""
return np.trace(gf_fnt.density(self, *args, **kwargs))
#----------------------------- IO -----------------------------------
def __reduce__(self):
return call_factory_from_dict, (Gf, self.name, self.__reduce_to_dict__())
def __reduce_to_dict__(self):
d = {'mesh' : self._mesh, 'data' : self._data}
return d
_hdf5_format_ = 'Gf'
@classmethod
def __factory_from_dict__(cls, name, d):
# Backward compatibility layer
# Drop singularity from the grp and ignore it
d.pop('singularity', None)
# Backward compatibility layer
# Drop indices from the grp and ignore it
d.pop('indices', None)
#
r = cls(name = name, **d)
# Backward compatibility layer
# In the case of an ImFreq function, old archives did store only the >0
# frequencies, we need to duplicate it for negative freq.
# Same code as in the C++ h5_read for gf.
need_unfold = isinstance(r.mesh, meshes.MeshImFreq) and r.mesh.positive_only()
return r if not need_unfold else wrapped_aux._make_gf_from_real_gf(r)
#-----------------------------plot protocol -----------------------------------
def _plot_(self, opt_dict):
""" Implement the plot protocol"""
return plot.dispatcher(self)(self, opt_dict)
[docs]
def x_data_view(self, x_window=None, flatten_y=False):
"""Helper method for getting a view of the data.
Parameters
----------
x_window : optional
The window of x variable (omega/omega_n/t/tau) for which data is requested.
flatten_y: bool, optional
If the Greens function is of size (1, 1) flatten the array as a 1d array.
Returns
-------
(X, data) : tuple
X is a 1d numpy array of the x variable inside the window requested.
data is a 3d numpy array of dim (:,:, len(X)), the corresponding slice of data.
If flatten_y is True and dim is (1, 1, *) it returns a 1d numpy array.
"""
X = [x.imag for x in self.mesh] if isinstance(self.mesh, meshes.MeshImFreq) \
else [x for x in self.mesh]
X, data = np.array(X), self.data
if x_window:
# the slice due to clip option x_window
sl = clip_array(X, *x_window) if x_window else slice(len(X))
X, data = X[sl], data[sl, :, :]
if flatten_y and data.shape[1:3] == (1, 1):
data = data[:, 0, 0]
return X, data
#---------------------------------------------------------
from h5.formats import register_class, register_backward_compatibility_method
register_class (Gf)
# A backward compatility function
[docs]
def bckwd(hdf_scheme):
# we know scheme is of the form GfM1_x_M2_s/tv3
m, t= hdf_scheme[2:], '' # get rid of Gf
for suffix in ['_s', 'Tv3', 'Tv4'] :
if m.endswith(suffix) :
m, t = m[:-len(suffix)], suffix
break
return { 'mesh': 'Mesh'+m }
# backward compatibility: suppress unrecognized GfIndices warnings
# when reading a Gf stored with triqs <3.2.x
warnings.filterwarnings("ignore", message="The hdf5 format GfIndices")
register_backward_compatibility_method("GfImFreq", "Gf", bckwd)
register_backward_compatibility_method("GfImTime", "Gf", bckwd)
register_backward_compatibility_method("GfLegendre", "Gf", bckwd)
register_backward_compatibility_method("GfReFreq", "Gf", bckwd)
register_backward_compatibility_method("GfReTime", "Gf", bckwd)