Source code for triqs.gf.gf

# Copyright (c) 2017-2018 Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
# Copyright (c) 2017-2018 Centre national de la recherche scientifique (CNRS)
# Copyright (c) 2018-2023 Simons Foundation
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You may obtain a copy of the License at
#     https:#www.gnu.org/licenses/gpl-3.0.txt
#
# Authors: Michel Ferrero, Olivier Gingras, Alexander Hampel, Jonathan Karp, Manuel, Olivier Parcollet, Markus Richter, Hugo U. R. Strand, Nils Wentzell

import itertools, warnings, numbers
from functools import reduce # Valid in Python 2.6+, required in Python 3
import operator
import numpy as np
from . import mesh_product
from . import lazy_expressions
from . import descriptors, descriptor_base
from .mesh_product import MeshProduct
from triqs.plot.protocol import clip_array
from . import meshes
from . import plot 
from . import gf_fnt, wrapped_aux
from .mesh_point import MeshPoint
from operator import mul

# list of all the meshes
all_meshes = (MeshProduct,) + tuple(c for c in list(meshes.__dict__.values()) if isinstance(c, type) and c.__name__.startswith('Mesh'))
# list of call_proxies
all_call_proxies = dict( (c.__name__, c) for c in list(wrapped_aux.__dict__.values()) if isinstance(c, type) and c.__name__.startswith('CallProxy'))

[docs] class CallProxyNone: """Default do nothing value"""
[docs] def __init__(self, *args): pass
def __call__(self, *args): raise NotImplementedError
# For IO later
[docs] def call_factory_from_dict(cl,name, dic): """Given a class cl and a dict dic, it calls cl.__factory_from_dict__(dic)""" return cl.__factory_from_dict__(name, dic)
# a metaclass that adds all functions of gf_fnt as methods # the C++ will take care of the dispatch
[docs] def add_method_helper(a,cls): def _(self, *args, **kw): return a(self, *args, **kw) _.__doc__ = a.__doc__ #_.__doc__ = 50*'-' + '\n' + a.__doc__ _.__name__ = a.__name__ return _
[docs] class AddMethod(type):
[docs] def __init__(cls, name, bases, dct): super(AddMethod, cls).__init__(name, bases, dct) for a in [f for f in list(gf_fnt.__dict__.values()) if callable(f)]: if not hasattr(cls, a.__name__): setattr(cls, a.__name__, add_method_helper(a,cls))
[docs] class Idx:
[docs] def __init__(self, *x): self.idx = x[0] if len(x)==1 else x
[docs] class Gf(metaclass=AddMethod): r""" TRIQS Greens function container class Parameters ---------- mesh: Types defined in triqs.gf beginning with 'Mesh' The mesh on which the Green function is defined. data: numpy.array, optional The data of the Greens function. Must be of dimension ``mesh.rank + target_rank``. target_shape: list of int, optional Shape of the target space. is_real: bool Is the Greens function real valued? If true, and target_shape is set, the data will be real. Mutually exclusive with argument ``data``. name: str The name of the Greens function for plotting. Notes ----- One of ``target_shape`` or ``data`` must be set, and the other must be `None`. """ _hdf5_data_scheme_ = 'Gf' __array_priority__ = 10000 # Makes sure the operations of this class are applied as priority
[docs] def __init__(self, **kw): # enforce keyword only policy #print "Gf construct args", kw def delegate(self, mesh, data=None, target_shape=None, name = '', is_real = False, indices=None): """ target_shape and data : must provide exactly one of them """ # FIXME ? name is deprecated #if name: # warnings.warn("constructor parameter 'name' is deprecated in gf constructor.\n It is only used in plots.\n Pass the name to the oplot function directly") self.name = name # input check assert (target_shape is None) or (data is None), "data and target_shape : one must be None" assert (data is None) or (is_real is False), "is_real can not be True if data is not None" if target_shape : for i in target_shape : assert i>0, "Target shape elements must be >0" # mesh assert isinstance(mesh, all_meshes), "Mesh is unknown. Possible type of meshes are %s" % ', '.join([m.__name__ for m in all_meshes]) self._mesh = mesh # indices backward compat layer if indices is not None: warnings.warn("The use of string indices is no longer supported, converting to target_shape instead.", DeprecationWarning) assert target_shape is None, "target_shape must be None if indices is not None" if isinstance(indices[0], (list, range)): target_shape = [len(li) for li in indices] else: target_shape = [len(indices), len(indices)] # data if data is None: # if no data, we need target_shape assert target_shape is not None, "target_shape must be provided if data is None" # we now allocate the data l = mesh.size_of_components() if isinstance(mesh, MeshProduct) else [len(mesh)] data = np.zeros(list(l) + list(target_shape), dtype = np.float64 if is_real else np.complex128) else: l = tuple(mesh.size_of_components()) if isinstance(mesh, MeshProduct) else (len(mesh),) assert l == data.shape[0:len(l)], "Mismatch between data shape %s and sizes of mesh(es) %s\n " % (data.shape, l) # Now we have the data at correct size. Set up a few short cuts self._data = data len_data_shape = len(self._data.shape) self._target_rank = len_data_shape - (self._mesh.rank if isinstance(mesh, MeshProduct) else 1) self._rank = len_data_shape - self._target_rank assert self._rank >= 0 # target_shape. Ensure it is correct in any case. assert target_shape is None or tuple(target_shape) == self._data.shape[self._rank:] # Debug only self._target_shape = self._data.shape[self._rank:] # NB : at this stage, enough checks should have been made in Python in order for the C++ view # to be constructed without any INTERNAL exceptions. # Set up the C proxy for call operator for speed. The name has to # agree with the wrapped_aux module, it is of only internal use s = '_x_'.join( m.__class__.__name__[4:] for m in self.mesh._mlist) if isinstance(mesh, MeshProduct) else self._mesh.__class__.__name__[4:] proxyname = 'CallProxy%s_%s%s'%(s, self.target_rank,'_R' if data.dtype == np.float64 else '') try: self._c_proxy = all_call_proxies.get(proxyname, CallProxyNone)(self) except: self._c_proxy = None # check all invariants. Debug. self.__check_invariants() delegate(self, **kw)
def __check_invariants(self): """Check various invariant. Mainly for debug""" # rank assert self.rank == self._mesh.rank if isinstance (self._mesh, MeshProduct) else 1 # The mesh size must correspond to the size of the data assert self._data.shape[:self._rank] == tuple(len(m) for m in self._mesh.components) if isinstance (self._mesh, MeshProduct) else (len(self._mesh),)
[docs] def density(self, *args, **kwargs): r"""Compute the density matrix of the Greens function Parameters ---------- beta : float, optional Used for finite temperature density calculation with ``MeshReFreq``. Returns ------- density_matrix : ndarray Single particle density matrix with shape ``target_shape``. Notes ----- Only works for single mesh Greens functions with a, Matsubara, real-frequency, or Legendre mesh. """ return gf_fnt.density(self, *args, **kwargs)
@property def rank(self): r"""int : The mesh rank (number of meshes).""" return self._rank @property def target_rank(self): """int : The rank of the target space.""" return self._target_rank @property def target_shape(self): """(int, ...) : The shape of the target space.""" return self._target_shape @property def target_indices(self): """(int, ...) : A generator for the target space integer tuples""" return itertools.product(*[range(i) for i in self._target_shape]) @property def indices(self): warnings.warn("Gf.indices is deprecated, use Gf.target_shape", DeprecationWarning) """(int, ...) : Deprecated. Use target_indices instead.""" return [range(d) for d in self.target_shape] @property def mesh(self): """gf_mesh : The mesh of the Greens function.""" return self._mesh @property def data(self): """ndarray : Raw data of the Greens function. Storage convention is ``self.data[x,y,z, ..., n0,n1,n2]`` where ``x,y,z`` correspond to the mesh variables (the mesh) and ``n0, n1, n2`` to the ``target_space``. """ return self._data
[docs] def copy(self) : """Deep copy of the Greens function. Returns ------- G : Gf Copy of self. """ return Gf (mesh = self._mesh.copy(), data = self._data.copy(), name = self.name)
[docs] def copy_from(self, another): """Copy the data of another Greens function into self.""" self._mesh.copy_from(another.mesh) assert self._data.shape == another._data.shape, "Shapes are incompatible: " + str(self._data.shape) + " vs " + str(another._data.shape) self._data[:] = another._data[:] self.__check_invariants()
def __repr__(self): return "Greens Function %s with mesh %s and target_shape %s: \n"%(self.name, self.mesh, self.target_shape) def __str__ (self): return self.__repr__() #-------------- Bracket operator [] ------------------------- # Helper: Convert Idx or MeshPoint into data_index, else forward argument @staticmethod def _to_data_index(x, m): if isinstance(x, MeshPoint): assert x.mesh_hash == m.mesh_hash, "Green function Mesh and MeshPoint have incompatible hash" return x.data_index elif isinstance(x, Idx): return m.to_data_index(x.idx) else: return x _full_slice = slice(None, None, None) def __getitem__(self, key): # First case : g[:] = RHS ... will be g << RHS if key == self._full_slice: return self # Only one argument. Must be a mesh point, idx or slicing rank1 target space if not isinstance(key, tuple): if isinstance(key, (Idx, MeshPoint)): return self.data[self._to_data_index(key, self._mesh)] else: key = (key,) # If all arguments are MeshPoint, we are slicing the mesh or evaluating if all(isinstance(x, (MeshPoint, Idx)) for x in key): assert len(key) == self.rank, "wrong number of arguments in [ ]. Expected %s, got %s"%(self.rank, len(key)) return self.data[tuple(self._to_data_index(x,m) for x,m in zip(key,self._mesh._mlist))] # If any argument is a MeshPoint, we are slicing the mesh or evaluating elif any(isinstance(x, (MeshPoint, Idx)) for x in key): assert len(key) == self.rank, "wrong number of arguments in [[ ]]. Expected %s, got %s"%(self.rank, len(key)) assert all(isinstance(x, (MeshPoint, Idx, slice)) for x in key), "Invalid accessor of Greens function, please combine only MeshPoints, Idx and slice" assert self.rank > 1, "Internal error : impossible case" # here all == any for one argument mlist = self._mesh._mlist for x in key: if isinstance(x, slice) and x != self._full_slice: raise NotImplementedError("Partial slice of the mesh not implemented") # slice the data k = tuple(self._to_data_index(x,m) for x,m in zip(key,mlist)) + self._target_rank * (slice(0, None),) dat = self._data[k] # list of the remaining lists mlist = [m for i,m in filter(lambda tup_im : not isinstance(tup_im[0], (MeshPoint, Idx)), zip(key, mlist))] assert len(mlist) > 0, "Internal error" mesh = MeshProduct(*mlist) if len(mlist)>1 else mlist[0] sing = None r = Gf(mesh = mesh, data = dat) r.__check_invariants() return r # In all other cases, we are slicing the target space else : assert self.target_rank == len(key), "wrong number of arguments. Expected %s, got %s"%(self.target_rank, len(key)) # Slicing with ranges if all(isinstance(x, slice) for x in key): key_tpl = tuple(key) # Integer access elif all(isinstance(x, int) for x in key): key_tpl = tuple(key) # Invalid Access elif any(isinstance(x, str) for x in key): raise RuntimeError("String indices are no longer supported. Please use integer indices for the target.") else: raise NotImplementedError("Partial slice of the target space not implemented") dat = self._data[ self._rank*(slice(0,None),) + key_tpl ] r = Gf(mesh = self._mesh, data = dat) r.__check_invariants() return r def __setitem__(self, key, val): # Only one argument and not a slice. Must be a mesh point, Idx if isinstance(key, (MeshPoint, Idx)): self.data[self._to_data_index(key, self._mesh)] = val # If all arguments are MeshPoint, we are slicing the mesh or evaluating elif isinstance(key, tuple) and all(isinstance(x, (MeshPoint, Idx)) for x in key): assert len(key) == self.rank, "wrong number of arguments in [ ]. Expected %s, got %s"%(self.rank, len(key)) self.data[tuple(self._to_data_index(x,m) for x,m in zip(key,self._mesh._mlist))] = val else: self[key] << val # -------------- Various operations ------------------------------------- @property def real(self): """Gf : A Greens function with a view of the real part.""" return Gf(mesh = self._mesh, data = self._data.real, name = ("Re " + self.name) if self.name else '') @property def imag(self): """Gf : A Greens function with a view of the imaginary part.""" return Gf(mesh = self._mesh, data = self._data.imag, name = ("Im " + self.name) if self.name else '') # -------------- Lazy system ------------------------------------- def __lazy_expr_eval_context__(self) : return LazyCTX(self) def __lshift__(self, A): """ A can be two things: * G << any_init will init the GFBloc with the initializer * G << g2 where g2 is a GFBloc will copy g2 into self """ if isinstance(A, Gf): if self is not A: # otherwise it is useless AND does not work !! assert self.mesh == A.mesh, "Green function meshes are not compatible:\n %s\nand\n %s" % (self.mesh, A.mesh) self.copy_from(A) elif isinstance(A, lazy_expressions.LazyExpr): # A is a lazy_expression made of GF, scalars, descriptors A2 = descriptors.convert_scalar_to_const(A) def e_t (x): if not isinstance(x, descriptors.Base): return x tmp = self.copy() x(tmp) return tmp self.copy_from (lazy_expressions.eval_expr_with_context(e_t, A2) ) elif isinstance(A, lazy_expressions.LazyExprTerminal): #e.g. g<< SemiCircular (...) self << lazy_expressions.LazyExpr(A) elif descriptors.is_scalar(A): #in the case it is a scalar .... self << lazy_expressions.LazyExpr(A) else: raise NotImplemented return self # -------------- call ------------------------------------- def __call__(self, *args) : assert self._c_proxy, " no proxy" def filt(x): if isinstance(x, MeshPoint): return x.value if isinstance(x, Idx): return x.idx return x return self._c_proxy(*[filt(x) for x in args]) # -------------- Various operations ------------------------------------- def __le__(self, other): raise RuntimeError(" Operator <= not defined ") # ---------- Addition def __iadd__(self,arg): if descriptor_base.is_lazy(arg): return lazy_expressions.make_lazy(self) + arg if isinstance(arg, Gf): assert type(self.mesh) == type(arg.mesh), "Can not add two Gf with meshes of different type" assert self.mesh == arg.mesh, "Can not add two Gf with different mesh" self._data += arg._data else: if self._target_rank != 2 and not isinstance(arg, np.ndarray): self._data[:] += arg elif self._target_rank == 2: wrapped_aux._iadd_g_matrix_scalar(self, arg) else: raise NotImplemented return self def __add__(self,y): c = self.copy() c += y return c def __radd__(self,y): return self.__add__(y) # ---------- Substraction def __isub__(self,arg): if descriptor_base.is_lazy(arg): return lazy_expressions.make_lazy(self) - arg if isinstance(arg, Gf): assert type(self.mesh) == type(arg.mesh), "Can not subtract two Gf with meshes of different type" assert self.mesh == arg.mesh, "Can not subtract two Gf with different mesh" self._data -= arg._data else: if self._target_rank != 2 and not isinstance(arg, np.ndarray): self._data[:] -= arg elif self._target_rank == 2: wrapped_aux._isub_g_matrix_scalar(self, arg) else: raise NotImplemented return self def __sub__(self,y): c = self.copy() c -= y return c def __rsub__(self,y): c = (-1)*self.copy() c += y return c # ---------- Matrix Multiplication (@) def __imatmul__(self,arg): if descriptor_base.is_lazy(arg): return lazy_expressions.make_lazy(self) * arg # If arg is a Gf if isinstance(arg, Gf): assert type(self.mesh) == type(arg.mesh), "Can not multiply two Gf with meshes of different type" assert self.mesh == arg.mesh, "Can not use in-place multiplication for two Gf with different mesh" if self.target_rank == 2: if arg.target_rank == 2: assert arg.target_shape[0] != arg.target_shape[1], "In place multiplication not supported if" "the argument is a nonsquare matrix. Use regular multiplication instead." np.matmul(self.data, arg.data, out=self.data) elif arg.target_rank == 0: self.data[:] *= arg.data[..., None, None] else: raise NotImplementedError("argument of in place multiplication must be rank 0 or 2") elif self.target_rank == 0: assert arg.target_rank == 0, "argument of in place multiplication must have rank 0 if self does" self.data[:] = self.data * arg.data else: raise NotImplementedError("Green's functions must be of rank 0 or 2 for multiplication") elif isinstance(arg, numbers.Number): self._data[:] *= arg elif isinstance(arg, np.ndarray): assert len(arg.shape) == 2, "Multiplication only supported for matrices" assert len(self.target_shape) == 2, "Multiplication only supported for matrix_valued Gfs" self.data[:] = np.tensordot(self.data, arg, axes=([-1], [-2])) else: assert False, "Invalid operand type for Gf in-place multiplication" return self @staticmethod def _combine_mesh_mul(l, r): """ Apply the Fermion/Boson rules for ImTime mesh, and recursively for MeshProduct""" assert type(l) == type(r), "Can not multiply two Gf with meshes of different type" if type(l) is MeshProduct: return MeshProduct(*[Gf._combine_mesh_mul(l,r) for (l,r) in zip(l.components, r.components)]) if not type(l) is meshes.MeshImTime: #regular case assert l==r, "Can not multiply two Gf with different mesh" return l.copy() else: assert abs(l.beta-r.beta) < 1.e-15 and len(l)== len(r), "Can not multiply two Gf with different mesh" return meshes.MeshImTime(l.beta, 'Boson' if l.statistic == r.statistic else 'Fermion', len(l)) def __matmul__(self,y): if isinstance(y, Gf): # make a copy, but special treatment of the mesh in the Imtime case. result_mesh = Gf._combine_mesh_mul(self._mesh, y.mesh) if self.target_rank == 2 and y.target_rank == 2: c = Gf(mesh=result_mesh, target_shape=[self.target_shape[0], y.target_shape[1]]) np.matmul(self.data, y.data, out=c.data) elif self.target_rank == 0 and y.target_rank == 0: c = Gf(mesh=result_mesh, target_shape=[]) c.data[:] = self.data * y.data elif self.target_rank == 2 and y.target_rank == 0: c = Gf(mesh=result_mesh, target_shape=self.target_shape) c.data[:] = self.data * y.data[..., None, None] elif self.target_rank == 0 and y.target_rank == 2: c = Gf(mesh=result_mesh, target_shape=y.target_shape) c.data[:] = self.data[..., None, None] * y.data else: raise NotImplementedError("Green's functions must be of rank 0 or 2 for multiplication") elif isinstance(y, (numbers.Number, np.ndarray)): c = self.copy() c *= y else: assert False, "Invalid operand type for Gf multiplication" return c def __rmatmul__(self,y): c = self.copy() if isinstance(y, np.ndarray): assert len(y.shape) == 2, "Multiplication only supported for matrices" assert len(self.target_shape) == 2, "Multiplication only supported for matrix_valued Gfs" c.data[:] = np.moveaxis(np.tensordot(y, self.data, axes=([-1], [-2])), 0, -2) elif isinstance(y, numbers.Number): c *= y else: assert False, "Invalid operand type for Gf multiplication" return c # ---------- Multiplication (with *, for now it's equivalent to the matrix multiplication) def __imul__(self,arg): return self.__imatmul__(arg) def __mul__(self,y): return self.__matmul__(y) def __rmul__(self,y): return self.__rmatmul__(y) # ---------- Division def __itruediv__(self,arg): self._data[:] /= arg return self def __truediv__(self,y): c = self.copy() c /= y return c # ---------- unary - def __neg__(self): c = self.copy() c *= -1 return c #----------------------------- other operations -----------------------------------
[docs] def invert(self): """Inverts the Greens function (in place).""" if self.target_rank == 0: # Scalar target space self.data[:] = 1. / self.data elif self.target_rank == 2: # Matrix target space # TODO: Replace by np.linag.inv, since v1.8 # Cf https://docs.scipy.org/doc/numpy/reference/generated/numpy.reshape.html d = self.data.view() d.shape = (np.prod(d.shape[:-2]),) + d.shape[-2:] # reshaped view, guarantee no copy wrapped_aux._gf_invert_data_in_place(d) else: raise TypeError( "Inversion only makes sense for matrix or scalar_valued Greens functions")
[docs] def inverse(self): """Computes the inverse of the Greens function. Returns ------- G : Gf (copy) The matrix/scalar inverse of the Greens function. """ r = self.copy() r.invert() return r
[docs] def transpose(self): """Take the transpose of a matrix valued Greens function. Returns ------- G : Gf (copy) The transpose of the Greens function. Notes ----- Only implemented for single mesh matrix valued Greens functions. """ # FIXME Why this assert ? #assert any( (isinstance(self.mesh, x) for x in [meshes.MeshImFreq, meshes.MeshReFreq])), "Method invalid for this Gf" assert self.rank == 1, "Transpose only implemented for single mesh Greens functions" assert self.target_rank == 2, "Transpose only implemented for matrix valued Greens functions" d = np.transpose(self.data.copy(), (0, 2, 1)) return Gf(mesh = self.mesh, data= d)
[docs] def conjugate(self): """Conjugate of the Greens function. Returns ------- G : Gf (copy) Conjugate of the Greens function. """ return Gf(mesh = self.mesh, data= np.conj(self.data))
[docs] def zero(self): """Set all values to zero.""" self._data[:] = 0
[docs] def from_L_G_R(self, L, G, R): r"""Matrix transform of the target space of a matrix valued Greens function. Sets the current Greens function :math:`g_{ab}` to the matrix transform of :math:`G_{cd}` using the left and right transform matrices :math:`L_{ac}` and :math:`R_{db}`. .. math:: g_{ab} = \sum_{cd} L_{ac} G_{cd} R_{db} Parameters ---------- L : (a, c) ndarray Left side transform matrix. G : Gf matrix valued target_shape == (c, d) Greens function to transform. R : (d, b) ndarray Right side transform matrix. Notes ----- Only implemented for Greens functions with a single mesh. """ assert self.rank == 1, "Only implemented for Greens functions with one mesh" assert self.target_rank == 2, "Matrix transform only valid for matrix valued Greens functions" assert len(L.shape) == 2, "L needs to be two dimensional" assert len(R.shape) == 2, "R needs to be two dimensional" assert L.shape[1] == G.target_shape[0], "Dimension mismatch between L and G" assert R.shape[0] == G.target_shape[1], "Dimension mismatch between G and R" assert L.shape[0] == self.target_shape[0], "Dimension mismatch between L and self" assert R.shape[1] == self.target_shape[1], "Dimension mismatch between R and self" if not L.strides == sorted(L.strides): L = L.copy(order='C') if not R.strides == sorted(R.strides): R = R.copy(order='C') wrapped_aux.set_from_gf_data_mul_LR(self.data, L, G.data, R)
[docs] def total_density(self, *args, **kwargs): """Compute total density. Returns ------- density : float Total density of the Greens function. Notes ----- Only implemented for single mesh Greens function with a, Matsubara, real-frequency, or Legendre mesh. """ return np.trace(gf_fnt.density(self, *args, **kwargs))
#----------------------------- IO ----------------------------------- def __reduce__(self): return call_factory_from_dict, (Gf, self.name, self.__reduce_to_dict__()) def __reduce_to_dict__(self): d = {'mesh' : self._mesh, 'data' : self._data} return d _hdf5_format_ = 'Gf' @classmethod def __factory_from_dict__(cls, name, d): # Backward compatibility layer # Drop singularity from the grp and ignore it d.pop('singularity', None) # Backward compatibility layer # Drop indices from the grp and ignore it d.pop('indices', None) # r = cls(name = name, **d) # Backward compatibility layer # In the case of an ImFreq function, old archives did store only the >0 # frequencies, we need to duplicate it for negative freq. # Same code as in the C++ h5_read for gf. need_unfold = isinstance(r.mesh, meshes.MeshImFreq) and r.mesh.positive_only() return r if not need_unfold else wrapped_aux._make_gf_from_real_gf(r) #-----------------------------plot protocol ----------------------------------- def _plot_(self, opt_dict): """ Implement the plot protocol""" return plot.dispatcher(self)(self, opt_dict)
[docs] def x_data_view(self, x_window=None, flatten_y=False): """Helper method for getting a view of the data. Parameters ---------- x_window : optional The window of x variable (omega/omega_n/t/tau) for which data is requested. flatten_y: bool, optional If the Greens function is of size (1, 1) flatten the array as a 1d array. Returns ------- (X, data) : tuple X is a 1d numpy array of the x variable inside the window requested. data is a 3d numpy array of dim (:,:, len(X)), the corresponding slice of data. If flatten_y is True and dim is (1, 1, *) it returns a 1d numpy array. """ X = [x.imag for x in self.mesh] if isinstance(self.mesh, meshes.MeshImFreq) \ else [x for x in self.mesh] X, data = np.array(X), self.data if x_window: # the slice due to clip option x_window sl = clip_array(X, *x_window) if x_window else slice(len(X)) X, data = X[sl], data[sl, :, :] if flatten_y and data.shape[1:3] == (1, 1): data = data[:, 0, 0] return X, data
#--------------------------------------------------------- from h5.formats import register_class, register_backward_compatibility_method register_class (Gf) # A backward compatility function
[docs] def bckwd(hdf_scheme): # we know scheme is of the form GfM1_x_M2_s/tv3 m, t= hdf_scheme[2:], '' # get rid of Gf for suffix in ['_s', 'Tv3', 'Tv4'] : if m.endswith(suffix) : m, t = m[:-len(suffix)], suffix break return { 'mesh': 'Mesh'+m }
# backward compatibility: suppress unrecognized GfIndices warnings # when reading a Gf stored with triqs <3.2.x warnings.filterwarnings("ignore", message="The hdf5 format GfIndices") register_backward_compatibility_method("GfImFreq", "Gf", bckwd) register_backward_compatibility_method("GfImTime", "Gf", bckwd) register_backward_compatibility_method("GfLegendre", "Gf", bckwd) register_backward_compatibility_method("GfReFreq", "Gf", bckwd) register_backward_compatibility_method("GfReTime", "Gf", bckwd)