Source code for cpp2py.wrap_generator

# Copyright (c) 2017-2018 Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
# Copyright (c) 2017-2018 Centre national de la recherche scientifique (CNRS)
# Copyright (c) 2018-2020 Simons Foundation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http:#www.apache.org/licenses/LICENSE-2.0.txt
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Authors: Gregory Kramida, Olivier Parcollet, Nils Wentzell, tayral

import sys
import re
import os
from mako.template import Template
import importlib
import collections

# the correspondance c type -> py_type
c_to_py_type = {'void' : 'None', 'int' : 'int', 'long' : 'int', 'double' : "float", "std::string" : "str"}

# Translation for formatting of parsing converter.
basic_types_formatting = {'double' : 'd', 'int' : 'i'}

# Translate the name of the c++ type to the python type.
# for doc signatures.
def translate_c_type_to_py_type(t) :
    if t in c_to_py_type : return c_to_py_type[t]
    m = re.match('std::vector<(.*)>',t)
    if m: return "list[%s]"%translate_c_type_to_py_type(m.group(1))
    # numpy, etc...
    return t

[docs] class cfunction: """ Representation of one overload of a C++ function or method. """ def __init__(self, signature, calling_pattern = None, no_self_c = False, is_constructor = False, is_method = False, is_static = False, release_GIL_and_enable_signal = False, c_name = None, doc = '') : """ Parameters ---------- signature : string signature of the function, with types, parameter names and default value rtype( arg1 name1, arg2 name2 = default2, ....) it can be : - a string : rtype (arg1 name1, arg2 name2 = default2, ....) - a string : rtype c_name ( arg1 name1, arg2 name2 = default2, ....) - a dict [expert only] : rtype -> string , args -> list of tuples [ (c_type, variable_name, default_value)] where rtype is the C++ type returned by the function. calling_pattern : string A string containing a piece of C++ code to call the C++ function. This code can use : - self_c : a reference to the C++ object (except for constructor, and static method). - self_class : the name of the class of the C++ object (only for static method) - the name of the parameters. It should define a "result" variable : - unless for a constructor or if the C++ return type is void. - result shall be of any type from which the C++ return type is (move) constructible. If calling_pattern is None, a default one is synthesized by the generator, assuming the C++ function has exactly the signature given by the signature parameter of this function including the c_name in it (which is then mandatory). no_self_c : boolean. Do not generate self_c reference in C++ code, in some rare calling_pattern. Avoid a compiler warning. is_constructor : boolean is_method : boolean is_static : boolean. If True, it is a static method release_GIL_and_enable_signal : boolean, expert only - For long functions in pure C++. - If True, the GIL is released in the call of the C++ function and restored after the call. - It also saves the signal handler of python and restores it after the call, and enables the C++ signal_handler. - This allows e.g. to intercept Ctrl-C during the long C++ function. - **Requirement** : The function wrapped must be pure C++, i.e. no call whatsoever to the python C API, directly or indirectly. otherwise the behaviour is undefined. doc : string the doc string. """ #c_name : internal use only self._calling_pattern = calling_pattern self.is_constructor = is_constructor self.no_self_c = no_self_c self.doc = doc self.is_method = is_method self.is_static = is_static self._dict_call = None if is_static : assert is_method, "is_static only works with method" self.release_GIL_and_enable_signal = release_GIL_and_enable_signal assert isinstance(signature, str) or isinstance(signature, dict), "Signature must be a string of a dict: cf doc" self.c_name = c_name # Not none for internal call only ## Analyse signature. self.args, self.namespace = [], '' if isinstance(signature, str) : # it is a string, we analyse it to get the rtype, and args signature = re.sub(r"operator\(\s*\)","__operator_call",signature) # temp. replacement, to make the regex easier m = re.match(r"\s*(.*?)\s*\((.*)\)",signature) self.rtype, args = m.group(1).strip() or None, m.group(2).strip() # extract the c_name if present if self.rtype : spl = self.rtype.strip().rsplit(' ',1) if not is_constructor and len(spl)> 1 and '>' not in spl[-1] : self.rtype, c_name_fully_qualified = spl self.namespace, self.c_name = c_name_fully_qualified.rsplit('::',1 ) if ':' in c_name_fully_qualified else ('', c_name_fully_qualified) if self.c_name == '__operator_call' : self.c_name = "operator()" if args.strip().startswith("**") : # special case : dict call assert calling_pattern is None, "When ** is given as argument, no calling pattern can be provided" self._dict_call = args[2:] args, self.args = '','' # no argument def f(): # analyse the argument, be careful that , can also be in type, like A<B,C>, so we count the < > acc = '' for s in args.split(',') : acc += (',' if acc else '') + s.strip() if acc.count('<') == acc.count('>') and acc.count('{') == acc.count('}') : r, acc = acc,'' yield r def g(a) : if '=' in a : l,r = a.split('=') return l.strip().rsplit(' ') + [r] else : return a.rsplit(' ',1) #args = [ re.sub('=',' ',x).split() for x in f() if x] # list of (type, name, default) or (type, name) args = [ g(x) for x in f() if x] # list of (type, name, default) or (type, name) else: # mostly internal use, give signature as a dict self.rtype = signature.pop("rtype", None) args = signature.pop('args',()) self.c_name = signature.pop("c_name", '') for a in args: # put back the default if there is none # treat the case when the type is const T *, or T* (e.g. const char *). # Need to regroup the first pieces. assert len(a)>1, 'Incorrect signature %s: did you forget the name of the parameter ?'%a if a[0] == 'const' : a = [' '.join(a[:2])] + list(a[2:]) if a[1] == '*' : a = [' '.join(a[:2])] + list(a[2:]) if len(a) == 2 : (t,n),d = a,None elif len(a) == 3 : t,n,d = a else : raise RuntimeError("Syntax error in overload: args = %s"%args) self.args.append([t.strip(),n.strip(),d]) # end analyze signature # ensure no variable starts with __ for t,n,d in self.args : assert not n.startswith('__'), "Variables names starting with __ are reserved for internal use" # assert self.c_name or self._calling_pattern or self.is_constructor, "You must specify a calling_pattern or the signature must contain the name of the function" if self.is_constructor : assert self.rtype == None, "Constructor must not have a return type" self.is_method = False def _get_calling_pattern1(self) : """Generation only: gets the calling_pattern or synthesize the default""" if not self._dict_call: return '' return """if (PySequence_Size(args)>0) {PyErr_SetString(PyExc_TypeError, "The function must be called only with named arguments"); goto error_return;} if (!convertible_from_python<%s>(keywds,true)) goto error_return; auto dict_transcript = convert_from_python<%s>(keywds); """%(self._dict_call, self._dict_call) def _get_calling_pattern(self) : """Generation only: gets the calling_pattern or synthesize the default""" if self._calling_pattern : return self._calling_pattern s = "%s result = "%self.rtype if self.rtype != "void" else "" self_c = "" if self.is_method: self_c = "self_c." if not self.is_static else "self_class::" # the wrapped types are called by pointer args = ",".join( n for t,n,d in self.args) args = args if self._dict_call is None else "dict_transcript" return "%s %s%s(%s)"%(s,self_c, (self.namespace + '::' if self.namespace else '') + self.c_name, args) def _get_signature (self): """Signature for the python doc""" rtype = translate_c_type_to_py_type(self.rtype) if self.rtype else '' args_rep = ", ".join(["%s %s%s"%(translate_c_type_to_py_type(t),n,r' = ' + str(d) if d else '') for t,n,d in self.args]) return "({args_rep}) -> {rtype}".format(**locals()) def _get_c_signature (self): """Signature for the C++ calling errors""" name = self.c_name if self.c_name else "(no C++ name)" rtype = self.rtype if self.rtype else '' args_rep = ", ".join(["%s %s"%(t,n) for t,n,d in self.args]) return "{name}({args_rep}) -> {rtype}".format(**locals()) def __repr__(self): return "C++ function of signature : %s"%(self._get_signature()) def _parsing_format(self) : """Generation only: the formatting for the PyParse_xxx calls""" def f(t) : return basic_types_formatting[t] if t in basic_types_formatting else 'O&' l1 = [ f(t) for t,n,d in self.args if d==None] l2 = [ f(t) for t,n,d in self.args if d!=None] if l2 : l2.insert(0,'|') # starts the default arguments, cf python doc return ''.join(l1 + l2) def _generate_doc(self) : doc = "\n".join([ " " + x.rstrip() for x in self.doc.split('\n')]) if self._dict_call is not None : return doc return "Signature : %s\n%s"%( self._get_signature(),doc)
class pyfunction: """ Representation of one python function of the extension It is basically : - a python name - a list of overload - possibly some preprocessing/postprocessing python code. """ def __init__(self, name, arity = None, is_method = False, is_static = False, doc = ''): """ - name : name given in Python - arity : arity of the function - is_method : boolean - is_static : boolean. Is is a static method - doc : the doc string. - overloads : a list of cfunction objects representing the various C++ overloads of the function """ self.py_name =name # name given in python self.arity = arity self.is_method = is_method # can be a method, a function... self.is_static = is_static # self.doc = doc self.overloads = [] # List of all C++ overloads self.do_implement = True # in some cases, we do not want to implement it automatically, (special methods). self.is_constructor = False def add_overload(self, **kw) : self.overloads.append(cfunction(**kw)) return self def _generate_doc(self) : doc_list = [f for f in self.overloads if f.doc] if not doc_list : # no doc string is present doc_list.append(self.overloads[0]) elif len(doc_list) > 1 : # several doc strings print(f"Warning: Several doc strings for the overloaded function/method {self.py_name}") print(f" --> Only the doc string for {self.py_name}{doc_list[0]._get_signature()} will be used") s = doc_list[0]._generate_doc() + "\n" s=s.replace('@{','').replace('@}','') return s class converter_: """ Representation of a simple converter for a struct """ def __init__(self, c_type, doc=''): """ Parameters ---------- c_type : string C++ type to be converted. """ self.c_type = c_type self.doc = doc self.members = [] class member_: pass def add_member(self, c_name, c_type, initializer = '', doc = ''): """ Add a class member Parameters ---------- c_name : string name of the variable in C++ c_type : string type of the C++ variable initializer : string Default value doc : string the doc string. """ m = self.member_() m.c_name, m.c_type, m.initializer, m.doc = (c_name, c_type, initializer.strip(), doc) # the strip is crucial for empty string self.members.append(m) def generate(self): """ Generate the C code""" # generate the code for the converters script_path = os.path.dirname(os.path.abspath( __file__ )) tpl = Template(filename=script_path + '/mako/converters.cxx', strict_undefined=True) rendered = tpl.render(c=self) return rendered
[docs] class class_: """ Representation of a wrapped type """ def __init__(self, py_type, c_type, c_type_absolute = None, hdf5 = False, arithmetic = None, serializable = None, export = True, is_printable = False, doc = '', comparisons ='') : """ Parameters ---------- py_type : string Name given in Python c_type : string C++ type to be wrapped. c_type_absolute : string full path of c_type, no using, no alias (need for the py_converter hpp file) hdf5 : boolean generate the hdf5 write/read function from C++ triqs hdf5 protocol and register them in the hdf_archive arithmetic : tuple of strings Determines the operations to be implemented. - The idea is to give an abstract description of the mathematical structure to be implemented : an algebra, a group, a vector space, and so on. The generator will then implement all necessary functions, by calling their C++ counterparts. - Possible values : - ("abelian_group") : implements + and - - ("vector_space", Scalar) : implements a vector_space, with scalar Scalar - ("algebra", Scalar) : implements an algebra, with scalar Scalar - ("algebra_with_unit", with_options..., Scalars...) : implements an algebra, with: - scalars Scalar... : the scalars - with_options is (possibly empty) list of options : - with_unit : +/- of an element with a scalar (injection of the scalar with the unit) - with_unary_minus : implement unary minus - "add_only" : implements only + - with_inplace_operators : option to deduce the +=, -=, ... operators from +,-, .. It deduces the possibles terms to put at the rhs, looking at the case of the +,- operators where the lhs is of the type of self. NB : The operator is mapped to the corresponding C++ operators (for some objects, this may be faster) so it has to be defined in C++ as well.... - .... more to be defined. serializable : boolean Whether and how the object is to be serialized. Possible values are : - "tuple" : reduce it to a tuple of smaller objects, using the boost serialization compatible template in C++, and the converters of the smaller objects. - "h5" : serialize via a string, made by triqs::serialize/triqs::deserialize. Requires hdf5 >1.8.9. - "repr" : serialize via a string produced by python repr, reconstructed by eval. is_printable : boolean If true, generate the str, repr from the C++ << stream operator comparisons : string a chain with all operators separated by space, e.g. "== != < >" export : boolean [True] if True, the class converter are exported to modules that import this module. doc : string the doc string. """ self.c_type = c_type self.c_type_absolute = c_type_absolute or c_type self.implement_regular_type_converter = False # Default. Overrule with add_regular_type_converter self.py_type = py_type c_to_py_type[self.c_type] = self.py_type # register the name translation for the doc generation self.hdf5 = hdf5 assert serializable in [None, "h5", "tuple", "repr"] self.serializable = serializable self.is_printable = is_printable self.comparisons = comparisons self.iterator = None self.doc = doc self.methods = {} # a dict : string -> pyfunction for each method name self.constructor = None # a pyfunction for the constructors. self.members= [] # a list of _member self.properties= [] # a list of _property self.export = export # If hdf5 is True, wrap the C++. # We cannot generate a default implementation with error message as h5::group might not be available. # FIXME Remove triqs dependence if hdf5: self.add_method("void __write_hdf5__(h5::group gr, std::string key)", calling_pattern = "h5_write(gr, key, self_c);", doc = "hdf5 writing") # Init arithmetic # expect a tuple : "algebra", "scalar1", "scalar2", etc... self.number_protocol = {} if arithmetic : if not isinstance(arithmetic, tuple) : arithmetic = (arithmetic,) # read the with_... option and clean them for the list with_unary_minus = 'with_unary_minus' in arithmetic with_unit = 'with_unit' in arithmetic with_inplace_operators = 'with_inplace_operators' in arithmetic arithmetic = [x for x in arithmetic if not x.startswith("with_")] add = arithmetic[0] in ("algebra", "abelian_group", "vector_space", "add_only") abelian_group = arithmetic[0] in ("algebra", "abelian_group", "vector_space") vector_space = arithmetic[0] in ("algebra", "vector_space") algebra = arithmetic[0] in ("algebra",) if add : # add add = pyfunction(name ="__add__",arity = 2) add.add_overload (calling_pattern = "+", signature = {'args' : [(self.c_type,'x'), (self.c_type,'y')], 'rtype' :self.c_type}) self.number_protocol['add'] = add if abelian_group : #sub sub = pyfunction(name ="__sub__",arity = 2) sub.add_overload (calling_pattern = "-", signature = {'args' :[(self.c_type,'x'), (self.c_type,'y')], 'rtype' : self.c_type}) self.number_protocol['subtract'] = sub if vector_space : # mul mul = pyfunction(name ="__mul__", arity = 2) for scalar in arithmetic[1:] : mul.add_overload (calling_pattern = "*", signature = {'args' :[(self.c_type,'x'), (scalar,'y')], 'rtype' : self.c_type}) mul.add_overload (calling_pattern = "*", signature = {'args' :[(scalar,'x'), (self.c_type,'y')], 'rtype' : self.c_type}) self.number_protocol['multiply'] = mul # div div = pyfunction(name ="__div__", arity = 2) for scalar in arithmetic[1:] : div.add_overload (calling_pattern = "/", signature = {'args' :[(self.c_type,'x'), (scalar,'y')], 'rtype' : self.c_type}) self.number_protocol['divide'] = div self.number_protocol['true_divide'] = div self.number_protocol['floor_divide'] = div if algebra : mul.add_overload (calling_pattern = "*", signature = {'args' :[(self.c_type,'x'), (self.c_type,'y')], 'rtype' : self.c_type}) if with_unit: # Allow + and - between scalar and operator assert algebra, "The with_unit option only makes sense for algebra" for scal in arithmetic[1:] : add = self.number_protocol['add'] add.add_overload (calling_pattern = "+", signature = {'args' :[(self.c_type,'x'), (scal,'y')], 'rtype' : self.c_type}) add.add_overload (calling_pattern = "+", signature = {'args' :[(scal,'x'), (self.c_type,'y')], 'rtype' : self.c_type}) sub = self.number_protocol['subtract'] sub.add_overload (calling_pattern = "-", signature = {'args' :[(self.c_type,'x'), (scal,'y')], 'rtype' : self.c_type}) sub.add_overload (calling_pattern = "-", signature = {'args' :[(scal,'x'), (self.c_type,'y')], 'rtype' : self.c_type}) if with_unary_minus : # Allow unary - on an operator neg = pyfunction(name = "__neg__", arity = 1) neg.add_overload (calling_pattern = "-", signature = {'args' :[(self.c_type,'x')], 'rtype' : self.c_type}) self.number_protocol['negative'] = neg if with_inplace_operators : self.deduce_inplace_arithmetic()
[docs] def add_regular_type_converter(self): self.implement_regular_type_converter = True
[docs] def deduce_inplace_arithmetic(self) : """Deduce all the +=, -=, *=, /= operators from the +, -, *, / operators""" def one_op(op, name, iname) : if name not in self.number_protocol : return impl = pyfunction(name = iname, arity = 2) for overload in self.number_protocol[name].overloads : x_t,y_t = overload.args[0][0], overload.args[1][0] if x_t == self.c_type : # only when first the object impl.add_overload (calling_pattern = op+"=", signature = {'args' : [(x_t,'x'), (y_t,'y')], 'rtype' :overload.rtype}) self.number_protocol['inplace_'+name] = impl one_op('+',"add","__iadd__") one_op('-',"subtract","__isub__") one_op('*',"multiply","__imul__") one_op('/',"divide","__idiv__") one_op('/',"true_divide","__idiv__") one_op('/',"floor_divide","__idiv__")
[docs] def add_constructor(self, signature, calling_pattern = None, intermediate_type = None, doc = ''): """ Parameters ---------- signature : string signature of the function, with types, parameter names and defaut value rtype( arg1 name1, arg2 name2 = default2, ....) signature can be : - a string of 2 possible forms (i.e. c_name can be omitted) : - rtype (arg1 name1, arg2 name2 = default2, ....) - rtype c_name ( arg1 name1, arg2 name2 = default2, ....) - a dict : rtype -> string , args -> list of tuples [ (c_type, variable_name, default_value)] - rtype : the C++ type returned by the function. None for constructor default_value is None when there is no default. calling_pattern : string, expert only - Pattern to rewrite the call of the c++ constructor. - It is a string, argument name and defining a result of the c_type e.g., the default pattern is :: auto result = c_type (a,b,c) intermediate_type : string - Name of a C++ type to be used for constructing the object which is then constructed as c_type { intermediate_type {....}} E.g. Put a regular_type here when wrapping a view. doc : string the doc string. """ f = cfunction(signature, calling_pattern = calling_pattern, is_constructor = True, is_method = True, doc = doc) all_args = ",".join(n for t,n,d in f.args) all_args = all_args if f._dict_call is None else "convert_from_python<%s>(keywds)"%f._dict_call # call with the keywds argument f._calling_pattern = '' if f._dict_call is None else "if (!convertible_from_python<%s>(keywds,true)) goto error_return;\n"%f._dict_call if calling_pattern is not None : f._calling_pattern, all_args = calling_pattern + ';\n', "std::move(result)" if intermediate_type: f._calling_pattern += "((%s *)self)->_c = new %s(%s (%s));"%(self.py_type, self.c_type, intermediate_type, all_args) else : f._calling_pattern += "((%s *)self)->_c = new %s (%s);"%(self.py_type, self.c_type,all_args) if not self.constructor : self.constructor = pyfunction(name = "__init__", is_method = True, doc = doc) self.constructor.is_constructor = True self.constructor.overloads.append(f)
[docs] def add_method(self, signature, name =None, calling_pattern = None, no_self_c = False, is_method = False, is_static = False, doc = '', release_GIL_and_enable_signal = False, c_name = None): """ Add a C++ overload to a method of name name. Parameters ---------- signature : string signature of the function, with types, parameter names and defaut value rtype( arg1 name1, arg2 name2 = default2, ....) signature can be : - a string of 2 possible forms (i.e. c_name can be omitted) : - rtype (arg1 name1, arg2 name2 = default2, ....) - rtype c_name ( arg1 name1, arg2 name2 = default2, ....) - a dict : rtype -> string , args -> list of tuples [ (c_type, variable_name, default_value)] - rtype : the C++ type returned by the function. None for constructor default_value is None when there is no default. name : string name given in Python c_name : string name given in C++ If None, the C++ name extracted from the signature is used. calling_pattern : string - Pattern to rewrite the call of the c++ function, - It is a string, using self_c, argument name and defining result at the end if rtype != void e.g., the default pattern is : auto result = self_c.method_name(a,b,c). - If None, the signature must contain c_name no_self_c : boolean. do not generate self_c reference in C++ code, in some rare calling_pattern. Avoid a compiler warning. is_method : boolean is_static : boolean Is is a static method doc : string the doc string. release_GIL_and_enable_signal : boolean, expert only - For long functions in pure C++. - If True, the GIL is released in the call of the C++ function and restored after the call. - It also saves the signal handler of python and restores it after the call, and enables the C++ signal_handler. - This allows e.g. to intercept Ctrl-C during the long C++ function. - **Requirement** : The function wrapped must be pure C++, i.e. no call whatsoever to the python C API, directly or indirectly. otherwise the behaviour is undefined. """ f = cfunction(signature, calling_pattern = calling_pattern, no_self_c = no_self_c, is_constructor = False, is_method = True, is_static = is_static, release_GIL_and_enable_signal = release_GIL_and_enable_signal, doc = doc, c_name = c_name or name) name = name or f.c_name if name not in self.methods : self.methods[name] = pyfunction(name = name, is_method = True, is_static = is_static, doc = doc) self.methods[name].overloads.append(f)
[docs] def add_call(self, **kw) : """ Add the __call__ operator. It just calls add_method, for the operator(), with name = "__call__" Cf add_method documentation. """ if 'c_name' not in kw and 'calling_pattern' not in kw : kw['c_name']= "operator()" self.add_method(name = "__call__", **kw)
class _iterator: def __init__(self,c_type, c_cast_type, begin, end) : self.c_type, self.c_cast_type, self.begin, self.end = c_type, c_cast_type, begin, end
[docs] def add_iterator(self, c_type = "const_iterator", c_cast_type = None, begin = "std::begin", end = "std::end") : """ Add an iterator, wrapping a C++ iterator. Parameters ---------- c_type : string type of the C++ variable c_cast_type : string If not None, the result of the C++ iterator dereference if converted to the cast_type. begin, end : string Functions to find begin and end. """ self.iterator = self._iterator(c_type, c_cast_type, begin, end)
class _member: def __init__(self, c_name, c_type, py_name, read_only, doc): """ Parameters ---------- c_name : string name in C c_type : string type in C py_name : string name in Python """ self.c_name, self.c_type, self.py_name, self.doc, self.read_only = c_name, c_type, py_name or c_name, doc, read_only def _generate_doc(self) : doc = "\n".join([ " " + x.strip() for x in self.doc.split('\n')]) doc = doc.replace('@{','').replace('@}','') return doc
[docs] def add_member(self, c_name, c_type, py_name = None, read_only = False, doc = ''): """ Add a class member Parameters ---------- c_name : string name of the variable in C++ c_type : string type of the C++ variable py_name : string name of the variable in python. If None, use c_name. read_only : boolean is a read only parameter doc : string the doc string. """ self.members.append( self._member(c_name, c_type, py_name, read_only, doc))
class _property: def __init__(self, name, getter, setter, doc) : self.name, self.getter, self.setter, self.doc = name, getter, setter, doc def _generate_doc(self) : doc = "\n".join([ " " + x.strip() for x in self.doc.split('\n')]) doc = doc.replace('@{','').replace('@}','') return doc
[docs] def add_property(self, getter, setter = None, name = None, doc = ''): """ Add a property Parameters ---------- - getter : the cfunction representing the get part - setter : the cfunction representing the set part or None if the property if read only - name : name in python. If None, try to use the C++ name of the getter. - doc : the doc string. """ if not isinstance(getter, str) : getter.is_method = True self.properties.append( self._property(name or getter.c_name, getter, setter, doc) )
[docs] def add_len(self, c_name = None, calling_pattern = None, doc = "Length") : """ Add the len operator """ if not c_name and not calling_pattern : c_name = "size" self.add_method(name = "__len__impl", calling_pattern = calling_pattern, signature="int %s()"%c_name, doc= doc) self.methods['__len__impl'].do_implement = False # do not implement automatically, the signature is special
[docs] def add_getitem(self, signature, calling_pattern = None, doc = "operator[]" ) : """ Add a the __getitem__ operator """ self.add_method(name = "__getitem__impl", calling_pattern = calling_pattern, doc = doc, signature = signature, c_name = "operator[]")
[docs] def add_setitem(self, signature, calling_pattern = None, doc = "operator[]", **d ) : """ Add a the __setitem__ operator """ self.add_method(name = "__setitem__impl", calling_pattern = calling_pattern or "self_c[i] = v", doc = doc, signature = signature, **d)
[docs] def add_method_copy(self, clone_function = "cpp2py::make_clone") : """Add a method copy, that make a **deep** copy, using the clone function""" self.add_method(name = "copy", calling_pattern = self.c_type + " result = %s(self_c)"%clone_function, signature = self.c_type +"()", doc = "Make a copy (clone) of self")
[docs] def add_method_cpp_copy(self) : """Add a method sh_copy, that make an ordinary copy in C++""" self.add_method(name = "sh_copy", calling_pattern = self.c_type + " result = self_c", signature = self.c_type +"()", doc = "Make a copy of self")
[docs] def add_method_copy_from(self) : """Add a copy_from, using C++ assignment""" # other by pointer, it is necessarly a wrapped type self.add_method(name = "copy_from", calling_pattern = " self_c = other", signature = 'void(' + self.c_type +" other)", doc = "Assignment")
def _prepare_for_generation(self) : """Internal : Called just before the code generation""" self.has_mapping_protocol = '__getitem__impl' in self.methods or '__len__impl' in self.methods if '__setitem__impl' in self.methods and not '__getitem__impl' in self.methods : raise RuntimeError("Cannot generate a class with a setter and no getter")
[docs] class module_: """ Representation of a module """ def __init__(self, full_name, doc = '', app_name = None) : """ Parameters ---------- full_name : string complete name of the module (after install, e.g. triqs.gf) doc : string doc string """ self.full_name = full_name if app_name is None or app_name=="triqs" else app_name+"."+full_name self.name = full_name.rsplit('.',1)[-1] self.doc = doc self.classes = {} # dict : string -> class_. Key is the Python type self.converters = {} # dict : string -> converter self.functions = {} # functions : dict : string -> function_. Modules functions. Key is the python name. self.include_list = [] self.enums = [] self.using =[] self.imports =[] self._preamble = ''
[docs] def add_class(self, cls): """ Add a class into the module. It should not exist in the module already. """ if cls.py_type in self.classes : raise IndexError("The class %s already exists"%cls.py_type) self.classes[cls.py_type] = cls
[docs] def add_converter(self, conv): """ Add a converter into the module. It should not exist in the module already. """ if conv.c_type in self.converters : raise IndexError("The class %s already exists"%conv.c_type) self.converters[conv.c_type] = conv
[docs] def add_function(self, signature, name =None, calling_pattern = None, doc = '', release_GIL_and_enable_signal = False, c_name = None): """ Add a C++ overload to function of the module Parameters ---------- signature : string signature of the function, with types, parameter names and defaut value rtype( arg1 name1, arg2 name2 = default2, ....) signature can be : - a string of 2 possible forms (i.e. c_name can be omitted) : - rtype (arg1 name1, arg2 name2 = default2, ....) - rtype c_name ( arg1 name1, arg2 name2 = default2, ....) - a dict : rtype -> string , args -> list of tuples [ (c_type, variable_name, default_value)] - rtype : the C++ type returned by the function. None for constructor default_value is None when there is no default. name : string name given in Python c_name : string name given in C++ If None, the C++ name extracted from the signature is used. calling_pattern : string - Pattern to rewrite the call of the c++ function, - It is a string, using self_c, argument name and defining result at the end if rtype != void e.g., the default pattern is : auto result = self_c.method_name(a,b,c). - If None, the signature must contain c_name doc : string the doc string. release_GIL_and_enable_signal : boolean, expert only - For long functions in pure C++. - If True, the GIL is released in the call of the C++ function and restored after the call. - It also saves the signal handler of python and restores it after the call, and enables the C++ signal_handler. - This allows e.g. to intercept Ctrl-C during the long C++ function. - **Requirement** : The function wrapped MUST be pure C++, i.e. no call whatsoever to the python C API, directly or indirectly. otherwise the behaviour is undefined. """ f = cfunction(signature, calling_pattern = calling_pattern, release_GIL_and_enable_signal = release_GIL_and_enable_signal, doc = doc,c_name = c_name or name) name = name or f.c_name if name not in self.functions : self.functions[name] = pyfunction(name = name, doc = doc) self.functions[name].overloads.append(f)
[docs] def add_include(self, *filenames) : """ Add the filenames as C++ include in the generated wrapper and header. """ self.include_list.extend(filenames)
[docs] def add_using(self,ns) : """ Add the using statement into the generated wrapper (and NOT the header). """ self.using.append(ns)
[docs] def add_imports(self, *lst): """ Add a dependent import to the module. """ self.imports += lst
[docs] def add_preamble(self, preamble) : """ Add the using statement into the generated wrapper (and NOT the header). """ self._preamble += preamble + '\n'
class _enum: def __init__(self, c_name, values, c_namespace, doc) : self.c_name, self.c_namespace, self.values, self.doc = c_name, c_namespace + "::", values, doc self.c_name_absolute = self.c_namespace + self.c_name
[docs] def add_enum(self, c_name, values, c_namespace ="", doc = '') : """ Add an enum into the module. Parameters ---------- c_name : string name in C++ c_namespace: string namespace of the enum values : list of string represents the C++ enum values doc : string the doc string. """ self.enums.append( self._enum(c_name, values, c_namespace, doc))
def _all_args_kw_functions(self) : l = [ (f, self.name, None) for f in list(self.functions.values())] for c in list(self.classes.values()) : l += [(m,c.py_type, c.c_type) for m in list(c.methods.values()) if m.do_implement] if c.constructor : l.append( (c.constructor,c.py_type, c.c_type)) # Check before generation for f, name, x in l: n_dict_call = sum( 1 if overload._dict_call else 0 for overload in f.overloads) assert n_dict_call <= 1, "At most one possible overload with ** call" assert n_dict_call ==0 or len(f.overloads) == 1, ("The function %s.%s has a ** call and overloads, which is meaningless !"%(name,f.py_name)) return l
[docs] def generate_code(self) : """ Generate the wrapper and the header. The filenames are given in the sys.argv if self.app_name is set, generate a copy of the py_converter file with includes consistent with the installation (as opposed to the build): e.g. #include "a.hpp" in py_converter.hpp becomes #include <app_name/a.hpp> in py_converter.hpp.app_name.install """ script_path = os.path.dirname(os.path.abspath( __file__ )) mako_template = script_path + '/mako/wrap.cxx' wrap_file = sys.argv[1] # prepare generation for c in list(self.classes.values()) : c._prepare_for_generation() # call mako tpl = Template(filename=mako_template, strict_undefined=True) rendered = tpl.render(module=self, sys_modules = sys.modules) with open(wrap_file,'w') as f: f.write(rendered)