triqs.gf.backwd_compat.gf_imtime.GfImTime

class triqs.gf.backwd_compat.gf_imtime.GfImTime(**kw)[source]

Parameters (KEYWORD argument ONLY)

mesh: MeshImTime, optional

The mesh of the Green function If not present, it will be constructed from the parameters beta, [n_points], [statistic]

data: numpy.array, optional

The data of the Gf. Must be of dimension mesh.rank + target_rank. Incompatible with target_shape

target_shape: list of int, optional

Shape of the target space. Incompatible with data

is_real: bool

Is the Green function real valued ? If true, and target_shape is set, the data will be real. No effect with the parameter data.

name: str

The name of the Green function. For plotting.

Methods

__init__(**kw)

Same as Gf, but can rebuild the mesh for backward compatibility

conjugate()

Conjugate of the Greens function.

copy()

Deep copy of the Greens function.

copy_from(another)

Copy the data of another Greens function into self.

density(*args, **kwargs)

Compute the density matrix of the Greens function

enforce_discontinuity(*args, **kw)

Signature : (gf_view<triqs::gfs::legendre,matrix_valued> gl, matrix_view<double> disc) -> None Modify the coefficient to adjust discontinuity

fit_hermitian_tail(*args, **kw)

Signature : (gf_view<imfreq,matrix_valued> g, array_view<dcomplex,3> known_moments = {}) -> std::pair<array<dcomplex,3>, double> tail

fit_hermitian_tail_on_window(*args, **kw)

Signature : (gf_const_view<imfreq,matrix_valued> g, int n_min, int n_max, array_const_view<dcomplex,3> known_moments, int n_tail_max, int expansion_order) -> std::pair<array<dcomplex,3>, double> Fits the tail on the [n_min, n_max] window + negative counter part with the contraint of hermitian moment matrices

fit_tail(*args, **kw)

Signature : (gf_view<imfreq,matrix_valued> g, array_view<dcomplex,3> known_moments = {}) -> std::pair<array<dcomplex,3>, double> tail

fit_tail_on_window(*args, **kw)

Signature : (gf_const_view<imfreq,matrix_valued> g, int n_min, int n_max, array_const_view<dcomplex,3> known_moments, int n_tail_max, int expansion_order) -> std::pair<array<dcomplex,3>, double> Fits the tail on the [n_min, n_max] window + negative counter part

from_L_G_R(L, G, R)

Matrix transform of the target space of a matrix valued Greens function.

inverse()

Computes the inverse of the Greens function.

invert()

Inverts the Greens function (in place).

is_gf_hermitian(*args, **kw)

Signature : (gf<imfreq,scalar_valued> g, float tolerance = 1.e-12) -> bool

is_gf_real_in_tau(*args, **kw)

Signature : (gf<imfreq,scalar_valued> g, float tolerance = 1.e-12) -> bool

rebinning_tau(*args, **kw)

Signature : (gf_view<imtime,matrix_valued> g, size_t new_n_tau) -> gf<imtime, matrix_valued> Rebins the data of a GfImTime on a sparser mesh

replace_by_tail(*args, **kw)

Signature : (gf_view<imfreq,matrix_valued> g, array_const_view<dcomplex,3> tail, int n_min) -> None Replace the function by the evaluation of the tail for |n| > n_min

replace_by_tail_in_fit_window(*args, **kw)

Signature : (gf_view<imfreq,matrix_valued> g, array_const_view<dcomplex,3> tail) -> None Replace the function by the evaluation of the tail for |n| > n_min

set_from_fourier(*args, **kw)

Signature : (gf_view<imtime,scalar_valued> g_out, gf_view<imfreq,scalar_valued> g_in) -> None Fills self with the Fourier transform of g_in

set_from_imfreq(*args, **kw)

Signature : (gf_view<triqs::gfs::legendre,scalar_valued> gl, gf_view<imfreq,scalar_valued> gw) -> None Fills self with the legendre transform of gw

set_from_imtime(*args, **kw)

Signature : (gf_view<triqs::gfs::legendre,scalar_valued> gl, gf_view<imtime,scalar_valued> gt) -> None Fills self with the legendre transform of gt

set_from_legendre(*args, **kw)

Signature : (gf_view<imfreq,scalar_valued> gw, gf_view<triqs::gfs::legendre,scalar_valued> gl) -> None Fills self with the legendre transform of gl

set_from_pade(*args, **kw)

Signature : (gf_view<refreq,scalar_valued> gw, gf_view<imfreq,scalar_valued> giw, int n_points = 100, float freq_offset = 0.0) -> None

tau_L2_norm(*args, **kw)

Signature : (gf_view<dlr,scalar_valued> g) -> auto Calculate the L2 norm of the DLR Green's function in imaginary time: 1/beta * int_0^beta dt conj(g(t)) g(t).

total_density(*args, **kwargs)

Compute total density.

transpose()

Take the transpose of a matrix valued Greens function.

x_data_view([x_window, flatten_y])

Helper method for getting a view of the data.

zero()

Set all values to zero.

Attributes

data

Raw data of the Greens function.

imag

A Greens function with a view of the imaginary part.

indices

mesh

The mesh of the Greens function.

rank

The mesh rank (number of meshes).

real

A Greens function with a view of the real part.

target_indices

A generator for the target space integer tuples

target_rank

The rank of the target space.

target_shape

The shape of the target space.