Multidimensional arrays
TRIQS comes with a library of multidimensional arrays. This library, among others, allows for easy slicing, archiving and algebraic manipulations of multidimensional arrays. Here are a couple of simple examples showing the basic use of this class.
Declaring and printing an array
#include <nda/nda.hpp>
using nda::array;
int main() {
array<double, 1> A(20);
std::cout << "A = " << A << std::endl; // arrays are not init by default: this is random
A() = 2; // assign 2 to a complete view of A.
std::cout << "A = " << A << std::endl;
A(4) = 5;
std::cout << "A = " << A << std::endl;
}
- language:
cpp
Simple operations
#include <nda/nda.hpp>
using nda::array;
int main() {
array<double, 1> A(10), B(10);
A() = 2;
B() = 3;
array<double, 1> C = A + B;
std::cout << "C = " << C << std::endl;
}
HDF5 Archiving
Archiving an array into an HDF5 file is easy:
#include <nda/nda.hpp>
#include <nda/h5.hpp>
#include <h5/h5.hpp>
using nda::array;
int main() {
array<double, 2> A(2, 2);
A() = 3; // declare and init
h5::file file("store_A.h5", 'w'); // open the file
h5::write(file, "A", A); // write the array as 'A' into the file
array<double, 2> B; // read the file into B
h5::read(file, "A", B);
std::cout << "B = " << B << std::endl;
}
Views: ranges and slices
One can easily take a slice of an array to view and modify only part of the underlying data.
#include <nda/nda.hpp>
using nda::array;
using nda::array_view;
using itertools::range;
int main() {
array<double, 2> A(3, 3);
A() = 2.5;
std::cout << A << std::endl;
array_view<double, 1> B = A(1, range()); // select the first line of the matrix
std::cout << "B = " << B << std::endl;
B(0) = 1;
std::cout << "A = " << A << std::endl;
}
Matrices and vectors
Arrays must be distinguished from vectors and matrices, which have an algebra of their own.
#include <nda/nda.hpp>
using nda::array;
using nda::matrix;
using nda::vector;
int main() {
array<double, 2> A(2, 2), B(2, 2), C;
A() = 3;
B() = 1;
C = A * B;
std::cout << "A*B = " << C << std::endl;
matrix<double> D(2, 2), E(2, 2), F;
E() = 3;
E() = 1;
F = D * E;
std::cout << "C*D = " << F << std::endl;
vector<double> u(2), v(2), w;
u() = 1;
v() = 2;
w = u + v;
std::cout << "u+v = " << w << std::endl;
}
Defining through a lazy expression
#include <nda/nda.hpp>
using nda::array;
namespace tql = nda::clef;
int main() {
tql::placeholder<0> i_;
tql::placeholder<1> j_;
array<double, 2> A(2, 2);
A(i_, j_) << i_ + j_;
std::cout << "A = " << A << std::endl;
}
Linear algebra
#include <nda/nda.hpp>
#include <nda/linalg.hpp>
using nda::array;
using nda::matrix;
using nda::clef::placeholder;
int main() {
placeholder<0> i_;
placeholder<1> j_;
matrix<double> A(2, 2);
A(i_, j_) << i_ + j_;
matrix<double> B = inverse(A);
double C = determinant(A);
std::cout << "A^(-1) = " << B << std::endl;
std::cout << "det(A) = " << C << std::endl;
}
Map and fold
#include <nda/nda.hpp>
#include <nda/map.hpp>
using nda::array;
double f(int i) { return i * 10; }
int main() {
auto F = nda::map(std::function<double(int)>(f));
array<int, 2> A(2, 2);
A() = 2;
array<double, 2> B, C;
A() = 2;
B = F(A);
C = F(2 * A); // works also with expressions of course
std::cout << "A = " << A << std::endl;
std::cout << "F(A) = " << B << std::endl;
std::cout << "F(2*A) = " << C << std::endl;
}
The full reference of the array library can be found here.