triqs::atom_diag::atomic_g_w
#include <triqs/atom_diag/gf.hpp>
Synopsis
template<bool Complex>block_gf<triqs::mesh::refreq> atomic_g_w (gf_lehmann_t<Complex> const & lehmann,gf_struct_t const & gf_struct,mesh::refreq const & mesh,double broadening = 0) template<bool Complex>double beta,gf_struct_t const & gf_struct,std::pair<double, double> const & energy_window,int n_w,double broadening = 0,excluded_states_t const & excluded_states = {})
Documentation
1) The atomic retarded Green’s function, constructed from precomputed Lehmann representation
2) The atomic retarded Green’s function, possibly with excluded states (none by default)
Template parameters
- Complex Do we have a diagonalization problem with a complex-valued Hamiltonian?
Parameters
- lehmann Lehmann representation.
- gf_struct Block structure of the Green’s function, block name -> list of inner indices.
- mesh Real frequency mesh used in construction.
- broadening Lorentian broadening of the spectrum (imaginary frequency shift).
- atom Solved diagonalization problem.
- beta Inverse temperature.
- energy_window Energy window \((\omega_{min}, \omega_{max})\).
- n_w Number of frequency points.
- excluded_states Excluded eigenstates as pairs (subspace index, inner index).
Returns
Atomic Green’s function \(G_{at}(\omega)\).