Source code for triqs.gf.plot.bz

# Copyright (c) 2016 Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
# Copyright (c) 2016 Centre national de la recherche scientifique (CNRS)
# Copyright (c) 2020 Simons Foundation
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You may obtain a copy of the License at
#     https:#www.gnu.org/licenses/gpl-3.0.txt
#
# Authors: Thomas Ayral, Michel Ferrero, Olivier Parcollet, Nils Wentzell

from scipy.interpolate import griddata
import numpy as np

[docs] def make_plottable(self, method="cubic", nk=50): ''' :param method: cubic|nearest|linear :param nk: number of k points :return: x,y,z, zmin, zmax ''' pl = np.zeros((len(self.mesh), 2)) ik=0 for k in self.mesh: pl[ik, 0]=k[0] pl[ik, 1]=k[1] ik+=1 x = pl[:,0] y = pl[:,1] xi = np.linspace(min(x), max(x),nk) yi = np.linspace(min(y), max(y),nk) zmin,zmax=np.zeros((self.data.shape[1], self.data.shape[2]), np.complex64), np.zeros((self.data.shape[1], self.data.shape[2]), np.complex64) zi=[] for ind_x in range(self.data.shape[1]): zi.append([]) for ind_y in range(self.data.shape[2]): z = self.data[:,ind_x,ind_y] zmin[ind_x,ind_y]=np.amin(z.real)+np.amin(z.imag)*1j zmax[ind_x,ind_y]=np.amax(z.real)+np.amax(z.imag)*1j zi[ind_x].append(griddata((x, y), z, (xi[None,:], yi[:,None]), method=method)) return xi,yi,np.array(zi),zmin,zmax
from scipy import interpolate import itertools
[docs] def dist(A,B): return np.sqrt((A[0]-B[0])**2+(A[1]-B[1])**2)
[docs] def length(path): return sum([dist(path[i],path[i+1]) for i in range(len(path)-1)])
[docs] def generate_points(A,B, n_points): pts=[] for i in range(n_points): x=A[0]+(B[0]-A[0])/(n_points-1)*i y=A[1]+(B[1]-A[1])/(n_points-1)*i pts.append((x, y)) return pts
[docs] def generate_points_on_path(path, n_points): n_segs = len(path)-1 l_path = length(path) l_points=[] #n_seg = n_points/n_segs high_sym=[0] for i in range(len(path)-1): n_seg = int(n_points*dist(path[i],path[i+1])/l_path) pts=generate_points(path[i],path[i+1],n_seg) l_points=list(itertools.chain(l_points,pts)) high_sym.append(len(l_points)) return l_points, high_sym
[docs] def slice_on_path(self, path, n_pts=100, method="cubic"): ''' :param path: a list of points defining a path in the BZ [array(x,y), ...] :param n_pts: the number of points on the path :param method: interpolation method (cubic|linear|nearest) :return: L,Ltot with L: list of momenta on path and Ltot: Ltot[0][0] : list of eps(k)(0,0) for each k ''' x,y,z,zmin,zmax = make_plottable(self, method=method) #print z #where_are_NaNs = np.isnan(z) #z[where_are_NaNs] = -10 z=np.nan_to_num(z) sp_real = interpolate.RectBivariateSpline(x, y, z[0,0,:,:].real, kx=2, ky=2, s=0) sp_imag = interpolate.RectBivariateSpline(x, y, z[0,0,:,:].imag, kx=2, ky=2, s=0) L, high_sym=generate_points_on_path(path,n_pts) Lz_on_path = [sp_real(x0,y0)[0][0]+1j*sp_imag(x0,y0)[0][0] for x0,y0 in L] return L, np.array(Lz_on_path), high_sym
[docs] def plot(self, opt_dict): r""" Plot protocol for GfBrillouinZone objects. """ plot_type = opt_dict.pop('type','XY') method = opt_dict.pop('method', 'nearest') comp = opt_dict.pop('mode', 'R') component= lambda x : x.real if comp=="R" else x.imag if 'BrillouinZone' in str(type(self.mesh)): X_label = r"k" elif 'CyclicLattice' in str(type(self.mesh)): X_label = r"R" else: X_label = "X" if plot_type=="contourf": x,y,z,zmin, zmax = make_plottable(self, method=method) default_dict = {'xdata': x, 'ydata': y, 'label': r'$G_\mathbf{%s}$'%X_label, 'xlabel': r'$%s_x$'%X_label, 'ylabel': r'$%s_y$'%X_label, 'zdata' : component(z[0,0, :, :]), 'levels':np.linspace(component(zmin[0,0]),component(zmax[0,0]),50), 'plot_function': plot_type, 'title': r'$\mathrm{%s}G(\mathbf{%s})$'%('Re' if comp=='R' else 'Im', X_label), } elif plot_type=="XY": path=opt_dict.pop("path") L,Lpt, high_sym = slice_on_path(self, path=path, method=method) xticks_args=(high_sym, ["%1.3f,%1.3f"%(x,y) for x,y in path],) default_dict = {'xdata': list(range(0,len(L))), 'ydata': component(Lpt), 'label': r'$G_\mathbf{%s}$'%X_label, 'xlabel': r'$\mathbf{%s}$'%X_label, 'plot_function': 'plot', 'xticks' : xticks_args, } else: raise Exception("Unknown plot type %s. Should be 'XY' (default) or 'contourf'"%mode) default_dict.update(opt_dict) return [default_dict]