[gf<imtime>] Matsubara imaginary time
This is a specialisation of gf for imaginary Matsubara time.
Synopsis
gf<imtime, Target, Opt>
The Target template parameter can take the following values:
Target |
Meaning |
---|---|
scalar_valued |
The function is scalar valued (double, complex…). |
matrix_valued [default] |
The function is matrix valued. |
Domain & mesh
The domain is the set of real numbers between 0 and \(\beta\) since the function is periodic (resp. antiperiodic) for bosons (resp. fermions), i.e.
\(G(\tau+\beta)=-G(\tau)\) for fermions
\(G(\tau+\beta)=G(\tau)\) for bosons.
The domain is implemented in
The mesh is mesh::imtime.
Singularity
The singularity is a high frequency expansion, High-Frequency moments of the Green’s function.
Evaluation method
Use a linear interpolation between the two closest point of the mesh.
Return type:
If Target==scalar_valued: a complex
If Target==matrix_valued: an object modeling ImmutableMatrix concept.
When the point is outside of the mesh, the evaluation of the gf returns:
the evaluation of the high frequency tail
Data storage
If Target==scalar_valued :
data_t: 1d array of complex<double>.
g.data()(i) is the value of g for the i-th point of the mesh.
If Target==matrix_valued :
data_t: 3d array (C ordered) of complex<double>.
g.data()(i, range::all, range::all) is the value of g for the i-th point of the mesh.
TO DO: complex OR DOUBLE: FIX and document !!
HDF5 storage convention
h5 tag: ImTime
Examples
#include <triqs/gfs.hpp>
#include <triqs/mesh.hpp>
using namespace triqs::gfs;
using namespace triqs;
int main() {
double beta = 10, a = 1;
int n_times = 1000;
// --- first a matrix_valued function ------------
// First give information to build the mesh, second to build the target
auto g1 = gf<imtime, matrix_valued>{{beta, Fermion, n_times}, {1, 1}};
// or a more verbose/explicit form ...
auto g2 = gf<imtime>{{beta, Fermion, n_times}, make_shape(1, 1)};
nda::clef::placeholder<0> tau_;
g1(tau_) << exp(-a * tau_) / (1 + exp(-beta * a));
// evaluation at tau=3.2
std::cout << nda::make_regular(g1(3.2)) << " == " << exp(-a * 3.2) / (1 + exp(-beta * a)) << std::endl;
// --- a scalar_valued function ------------
// same a before, but without the same of the target space ...
auto g3 = gf<imtime, scalar_valued>{{beta, Fermion, n_times}};
g3(tau_) << exp(-a * tau_) / (1 + exp(-beta * a));
// evaluation at tau=3.2
std::cout << g3(3.2) << " == " << exp(-a * 3.2) / (1 + exp(-beta * a)) << std::endl;
}
[[(0.0407608,0)]] == 0.0407604
(0.0407608,0) == 0.0407604